• 제목/요약/키워드: 지식탐사

검색결과 95건 처리시간 0.034초

시간간격을 고려한 시간관계 규칙 탐사 기법 (Discovering Temporal Relation Rules from Temporal Interval Data)

  • 이용준;서성보;류근호;김혜규
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권3호
    • /
    • pp.301-314
    • /
    • 2001
  • 데이터마이닝은 대용량 데이터베이스에 내재된 유용한 지식을 탐사하는 기술로 정의된다. 데이터마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 시간 연관규칙 탐사 등과 같이 시간 값을 가진 데이터로부터 지식을 탐사하고자 하는 시간 데이터마이닝에 대한 연구가 수행되었다. 그러나 기존 연구는 트랜잭션의 발생 시점만을 가진 데이터를 다루고 있으며 시간 간격을 가진 데이터는 거의 고려하고 있지 않다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 시간간격을 가진 다양한 데이터가 존재하며 이로부터 여러 유용한 지식을 찾아낼 수 있다. Allen은 시간간격 데이터 사이에 발생할 수 있는 시간 관계와 시간 관계를 구할 수 있는 시간간격 연산자를 정의하였다. 본 논문에서는 Allen의 정의를 기반으로 시간간격 데이터로부터 시간관계 규칙을 효율적으로 탐사하기 위한 새로운 데이터마이닝 기법을 제안하였다. 이 기법은 발생 시점을 가진 시간 데이터를 시간간격 데이터로 요약하여 일반화하는 전처리 알고리즘과 시간간격 데이터로부터 시간관계 규칙을 생성하는 규clr 탐사 알고리즘으로 구성된다. 이 기법은 기존 데이터마이닝 기법에서 찾지 못하는 유용한 시간 규칙을 탐사할 수 있다.

  • PDF

시간 데이타마이닝 프레임워크 (Temporal Data Mining Framework)

  • 이준욱;이용준;류근호
    • 정보처리학회논문지D
    • /
    • 제9D권3호
    • /
    • pp.365-380
    • /
    • 2002
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 "시간값을 가진 대용량 데이타로부터 이전에 잘 알려지지는 않았지만, 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술"로 정의된다. 시간 지식이란 주기적 패턴, 캘린더 패턴, 경향 등과 같이 시간 의미와 시간 관계를 가진 지식을 말한다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 다양한 시간 데이타가 존재하며 이로부터 여러 형태의 유용한 시간 지식을 찾아낼 수 있다. 데이타마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 주기적 연관규칙 탐사 등과 같이 시간 지식을 탐사하고자 하는 시간 데이타마이닝에 대한 부분적인 연구가 수행되었다. 그러나 기존 연구는 단순히 데이타의 발생 순서 및 유사한 패턴을 찾아내는데 중점을 두고 있어 데이타가 포함하고 있는 시간 의미와 시간 관계를 탐사하는데 부족하며, 시간 지식의 전체적인 측면보다는 연관 규칙과 같은 일부분만을 다루고 있다는 문제점을 가지고 있다. 따라서 이 논문에서는 시간 데이타마이닝에 대한 체계적인 연구를 위하여 시간 데이타마이닝에 대한 기존 연구 내용과 해결해야 할 문제점을 분석하고 이를 바탕으로 전체적인 프레임워크를 제시하였다. 또한 그 구현 방안 및 적용평가를 수행하였다. 프레임워크에서는 시간 데이타마이닝 모델을 제안하고, 이를 바탕으로 시간 데이타마이닝 질의어와 시간 지식을 탐사할 수 있는 시간 데이타마이닝 시스템을 설계하였다.

웹 상의 정보검색을 위한 지능형 검색시스템의 연구 (A Study of Practical Search System for Information Retrieval on the Web)

  • 박병율;임종태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (하)
    • /
    • pp.1737-1740
    • /
    • 2002
  • 검색시스템은 분류시스템과 지식탐사 시스템을 결합하여 구성한 복합적인 시스템으로 일반 사용자들에게 자신이 일하는 정보의 데이터를 우선적으로 제공한다. 시스템의 특징으로 겉으로 보기에는 일반 검색엔진과 유사하나, 시스템적으로는 요구하는 각종 기능과 검색 기법, 지식탐사기법이 들어있다. 시스템에서는 문서 분류기법과 문서와 검색어 사이의 연관성을 찾기 위한 방법, 문서간의 연속적인 사건을 통한 검색 패턴 탐사기법을 사용하였다. 이들은 시스템의 검색과 분류 결과를 지금까지보다 더욱 인공지능에 가깝도록 하여 준다.

  • PDF

데이터마이닝 기법을 이용한 변압기 부하패턴 분석 (Load Pattern Analysis of Distribution Transformer using Data Mining Techniques)

  • 신진호;김영일;이봉재;송재주;양일권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1879-1880
    • /
    • 2008
  • 시간 데이터마이닝은 기존 데이터마이닝에 시간 개념을 추가하여 시간 속성을 가진 데이터로부터 이전에 잘 알려지지는 않았지만 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술이다. 이 논문에서는 시간 속성을 가진 변압기 부하 패턴에 대해 시간의 변화에 따른 적용 시점이 명확한 지식 탐사가 가능하고, 향후 부하 예측에 있어 탐사된 규칙과 시간 지식을 이용함으로써 기존의 정적인 분류규칙을 적용한 방법보다 더 정확한 예측을 할 수 있는 새로운 시간 패턴 마이닝 기법을 제안한다.

  • PDF

데이터 마이닝의 수학적 배경과 교육방법론 (Mathematical Foundations and Educational Methodology of Data Mining)

  • 이승우
    • 한국수학사학회지
    • /
    • 제18권2호
    • /
    • pp.95-106
    • /
    • 2005
  • 본 논문에서는 수학을 기반으로 한 데이터베이스의 지식탐사 절차를 통하여 데이터의 선택, 정제, 통합, 변환, 축소, 데이터 마이닝 기법의 선택과 적용 및 모형의 평가에 관한 개념과 방법론을 소개하고 수학의 한 분야로서 통계학의 역할과 적용방법에 관하여 연구하고자 한다. 또한 오늘날 관심이 대상이 되고 있는 데이터 마이닝의 역사와 수학적 배경, 통계 및 정보 기술을 이용한 데이터 마이닝의 주요 모델링 기법, 실용적 응용 분야 및 적용 사례 그리고 데이터 마이닝과 통계의 차이점에 관하여 조사하고 논하고자 한다.

  • PDF

시간지원 데이터베이스에서의 시간 계층을 이용한 일반화된 패턴 정보 탐사 (Mining Generalized Temporal Patterns in Temporal Databases)

  • 이강태;이준욱;남광우;류근호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.232-233
    • /
    • 1998
  • 이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.

밀도 클러스터링을 이용한 공간 특성화 시스템 설계 및 구현 (Design and Implementation of Spatial Characterization System using Density-Based Clustering)

  • 유재현;박태수;안찬민;박상호;홍준식;이주홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.43-52
    • /
    • 2006
  • 최근 유비쿼터스 컴퓨팅의 관심이 증대되면서, 방대하고 다양한 형태의 데이터에 대한 효율성과 효과성을 고려한 지식 탐사연구의 필요성이 요구된다. 공간 특성화 방법은 공간과 비공간 속성들을 고려하여 특성화 지식을 발견하는 방법으로, 기존의 특성화 방법을 확장하여 공간 영역에 대한 다양한 형태의 지식을 발견할 수 있다. 기존 공간 특성화기법에 대한 연구들은 다음과 같은 문제점을 가진다. 첫째, 기존의 연구는 탐사된 지식의 결과가 다각적인 공간 분석을 수행하지 못하는 문제점을 가진다 둘째, 공간 탐색 시 사용자에 의해 미리 정해진 위치 영역만을 고려하여 탐색함으로 유용한 지식탐사를 보장하지 못하는 문제점을 가진다. 따라서 본 연구에서는 밀도 기반의 클러스터링이 적용된 새로운 공간 특성화기법을 제안한다.

  • PDF

데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링 (An Efficient Terminology Clustering Method Using Datamining Technique)

  • 이정화;남상엽;문현정;우용태
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 2000년도 추계학술대회 E-Business와 정보보안
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

이진 표현을 이용한 효율적인 연관 규칙 탐사 알고리즘 (An Efficient Algorithm for Mining Association Rules using a Binary Representation)

  • 김원영;최원길;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.375-378
    • /
    • 2008
  • 오늘날 지식을 기반으로 하는 고도의 정보사회로 나아가는 시점에서 우리는 대량의 데이터 속에서 필요한 지식을 찾아내는 것에 초점을 모으게 되었다. 따라서 대량의 데이터 속에서 필요한 지식을 자동으로 찾아내는 데이터 마이닝에 대한 연구가 활발히 진행되고 있다. 데이터 마이닝은 대용량의 데이터를 대상으로 하기 때문에 정확도뿐만이 아니라 소요시간도 중요하기 때문에 성능 향상을 위한 알고리즘들이 많이 개발되었다. 데이터 마이닝의 성능을 향상시키기 위해서 가장 좋은 방법이 데이터베이스의 스캔의 횟수를 줄이는 것이다. 본 논문에서는 연관 규칙 탐사에서 빈발 항목 집합을 찾아내는 부분을 이진 표현을 이용하여 좀 더 성능을 향상시킬 수 있는 알고리즘을 제안한다.

확장된 공간 연관 규칙 탐사기법 (Extended Method of Discovery of Spatial Association Rules)

  • 하단심;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.83-86
    • /
    • 2000
  • 공간 데이터가 증가함에 따라 이를 효율적으로 저장하고 분석할 수 있는 기술이 필요하게 되었다. 공간 데이터 마이닝은 데이터베이스에서 유용한 지식을 추출하는 기술로, 기존의 데이터 마이닝 방법에 공간의 개념을 추가하여 확장함으로써 공간 패턴, 공간 객체들의 연관 관계 둥을 얻을 수 있다. 본 논문에서는 공간 데이터 마이닝의 기법 중의 하나인 공간 연관 규칙 탐사 기법을 제안한다. 제안하는 방법은 공간 관계를 포함한 공간 연관 규칙뿐만 아니라 공간 객체의 비공간 속성도 함께 고려함으로써 보다 확장되고 다양한 공간 연관 규칙을 탐사할 수 있다.

  • PDF