• Title/Summary/Keyword: 지속가능한 성능

Search Result 495, Processing Time 0.029 seconds

A Comparative Study on Reservoir Level Prediction Performance Using a Deep Neural Network with ASOS, AWS, and Thiessen Network Data

  • Hye-Seung Park;Hyun-Ho Yang;Ho-Jun Lee; Jongwook Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.

Enhanced Electrochemical CO2 Reduction on Porous Au Electrodes with g-C3N4 Integration (g-C3N4 도입에 따른 다공성 Au 전극의 전기화학적 이산화탄소 환원 특성)

  • Jiwon Heo;Chaewon Seong;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.78-84
    • /
    • 2024
  • The electrochemical reduction of carbon dioxide (CO2) is gaining attention as an effective method for converting CO2 into high-value carbon compounds. This paper reports a facile meth od for synth esizing and characterizing g-C3N4-modified porous Au (pAu) electrodes for electrochemical CO2 reduction using e-beam deposition and anodization techniques. The fabricated pAu@g-C3N4 electrode (@ -0.9 VRHE) demonstrated superior electrochemical performance compared to the pAu electrode. Both electrodes exhibited a Faradaic efficiency (FE) of 100% for CO production. The pAu@g-C3N4 electrode achieved a maximum CO production rate of 9.94 mg/s, which is up to 2.2 times higher than that of the pAu electrode. This study provides an economical and sustainable approach to addressing climate change caused by CO2 emissions and significantly contributes to the development of electrodes for electrochemical CO2 reduction.

A Study on Generation Quality Comparison of Concrete Damage Image Using Stable Diffusion Base Models (Stable diffusion의 기저 모델에 따른 콘크리트 손상 영상의 생성 품질 비교 연구)

  • Seung-Bo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.55-61
    • /
    • 2024
  • Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Analysis of research trends for utilization of P-MFC as an energy source for nature-based solutions - Focusing on co-occurring word analysis using VOSviewer - (자연기반해법의 에너지원으로서 P-MFC 활용을 위한 연구경향 분석 - VOSviewer를 활용한 동시 출현단어 분석 중심으로 -)

  • Mi-Li Kwon;Gwon-Soo Bahn
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Plant Microbial Fuel Cells (P-MFCs) are biomass-based energy technologies that generate electricity from plant and root microbial communities and are suitable for natural fundamental solutions considering sustainable environments. In order to develop P-MFC technology suitable for domestic waterfront space, it is necessary to analyze international research trends first. Therefore, in this study, 700 P-MFC-related research papers were investigated in Web of Science, and the core keywords were derived using VOSviewer, a word analysis program, and the research trends were analyzed. First, P-MFC-related research has been on the rise since 1998, especially since the mid to late 2010s. The number of papers submitted by each country was "China," "U.S." and "India." Since the 2010s, interest in P-MFCs has increased, and the number of publications in the Philippines, Ukraine, and Mexico, which have abundant waterfront space and wetland environments, is increasing. Secondly, from the perspective of research trends in different periods, 1998-2015 mainly carried out microbial fuel cell performance verification research in different environments. The 2016-2020 period focuses on the specific conditions of microbial fuel cell use, the structure of P-MFC and how it develops. From 2021 to 2023, specific research on constraints and efficiency improvement in the development of P-MFC was carried out. The P-MFC-related international research trends identified through this study can be used as useful data for developing technologies suitable for domestic waterfront space in the future. In addition to this study, further research is needed on research trends and levels in subsectors, and in order to develop and revitalize P-MFC technologies in Korea, research on field applicability should be expanded and policies and systems improved.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Charaterization of Biomass Production and Wastewater Treatability by High-Lipid Algal Species under Municial Wastewater Condition (실제 하수조건에서 고지질 함량 조류자원의 생체생성과 하수처리 특성 분석)

  • Lee, Jang-Ho;Park, Joon-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • Wastewater treatment using algal communities and biodiesel production from wastewater-cultivated algal biomass is a promising green growth technology. In literature, there are many studies providing information on algal species producing high content of lipid. However, very little is known about adaptability and wastewater treatability of such high-lipid algal species. In this study, we attempted to characterize algal biomass production and wastewater treatability of high-lipid algal species under municipal wastewater condition. For this, four known high-lipid algal strains including Chlorella vulgaris AG 10032, Ankistrodesmus gracilis SAG 278-2, Scenedesmus quadricauda, and Botryococcus braunii UTEX 572 were individually inoculated into municipal wastewater where its indigenuous algal populations were removed prior to the inoculation, and the algae-inoculated wastewater was incubated in the presence of light source (80${\mu}E$) for 9 days in laboratory batch reactors. During the incubations, algal biomass production (dry weight) and the removals of dissolved organics (COD), nitrogen and phosphorous were measured in laboratory batch reactors. According to algal growth results, C. vulgaris, A. gracilis and S. quadricauda exhibited faster growth than indigenuous wastewater algal populations while B. braunii did not. The wastewater-growing strains exhibited efficient removals of total-N, ${NH_4}^+$-N, Total-P and ${PO_4}^{3-}$-P which satisfy the Korea water quality standards for effluent from municipal wastewater treatment plants. A. gracilis and S. quadricauda exhibited efficient and stable treatability of COD but C. vulgaris showed unstable treatability. Taken together with the results, A. gracilis and S. quadricauda were found to be suitable species for biomass production and wastewater treatment under municipal wastewater condition.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Basic Research on the Possibility of Developing a Landscape Perceptual Response Prediction Model Using Artificial Intelligence - Focusing on Machine Learning Techniques - (인공지능을 활용한 경관 지각반응 예측모델 개발 가능성 기초연구 - 머신러닝 기법을 중심으로 -)

  • Kim, Jin-Pyo;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.70-82
    • /
    • 2023
  • The recent surge of IT and data acquisition is shifting the paradigm in all aspects of life, and these advances are also affecting academic fields. Research topics and methods are being improved through academic exchange and connections. In particular, data-based research methods are employed in various academic fields, including landscape architecture, where continuous research is needed. Therefore, this study aims to investigate the possibility of developing a landscape preference evaluation and prediction model using machine learning, a branch of Artificial Intelligence, reflecting the current situation. To achieve the goal of this study, machine learning techniques were applied to the landscaping field to build a landscape preference evaluation and prediction model to verify the simulation accuracy of the model. For this, wind power facility landscape images, recently attracting attention as a renewable energy source, were selected as the research objects. For analysis, images of the wind power facility landscapes were collected using web crawling techniques, and an analysis dataset was built. Orange version 3.33, a program from the University of Ljubljana was used for machine learning analysis to derive a prediction model with excellent performance. IA model that integrates the evaluation criteria of machine learning and a separate model structure for the evaluation criteria were used to generate a model using kNN, SVM, Random Forest, Logistic Regression, and Neural Network algorithms suitable for machine learning classification models. The performance evaluation of the generated models was conducted to derive the most suitable prediction model. The prediction model derived in this study separately evaluates three evaluation criteria, including classification by type of landscape, classification by distance between landscape and target, and classification by preference, and then synthesizes and predicts results. As a result of the study, a prediction model with a high accuracy of 0.986 for the evaluation criterion according to the type of landscape, 0.973 for the evaluation criterion according to the distance, and 0.952 for the evaluation criterion according to the preference was developed, and it can be seen that the verification process through the evaluation of data prediction results exceeds the required performance value of the model. As an experimental attempt to investigate the possibility of developing a prediction model using machine learning in landscape-related research, this study was able to confirm the possibility of creating a high-performance prediction model by building a data set through the collection and refinement of image data and subsequently utilizing it in landscape-related research fields. Based on the results, implications, and limitations of this study, it is believed that it is possible to develop various types of landscape prediction models, including wind power facility natural, and cultural landscapes. Machine learning techniques can be more useful and valuable in the field of landscape architecture by exploring and applying research methods appropriate to the topic, reducing the time of data classification through the study of a model that classifies images according to landscape types or analyzing the importance of landscape planning factors through the analysis of landscape prediction factors using machine learning.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.