Acknowledgement
본 연구는 한국건설기술연구원의 2024년주요사업(과제번호: 20240051-009 터널 안전 점검용 고성능 UWB 기반 소형 AI 드론 주행 기술 개발)의 재원으로 수행된 연구 결과입니다.
References
- Li, S., and Zhao, X. (2023), High-resolution concrete damage image synthesis using conditional generative adversarial network, Automation in Construction, 147, 104739.
- Ji, A., Xue, X., Wang, Y., Luo, X., and Xue, W. (2020), An integrated approach to automatic pixel-level crack detection and quantification of asphalt pavement, Automation in Construction, 114, 103176.
- Graybeal, B. A., Phares, B. M., Rolander, D. D., Moore, M., and Washer, G. (2002), Visual inspection of highway bridges, Journal of Nondestructive Evaluation, 21(3), 67-83. https://doi.org/10.1023/A:1022508121821
- Cha, Y. J., Choi, W., and Buyukozturk, O. (2017), Deep learning-based crack damage detection using convolutional neural networks, Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Xia, B., Cao, J., Zhang, X., and Peng, Y. (2020), Automatic concrete sleeper crack detection using a one-stage detector, International Journal of Intelligent Robotics and Applications, 4(3), 319-327. https://doi.org/10.1007/s41315-020-00141-4
- Li, S., Zhao, X., and Zhou, G. (2019), Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network, Computer-Aided Civil and Infrastructure Engineering, 34(7), 616-634. https://doi.org/10.1111/mice.12433
- Shim, S. (2024), Self-training approach for crack detection using synthesized crack images based on conditional generative adversarial network, Computer-Aided Civil and Infrastructure Engineering, 39(7), 1019-1041. https://doi.org/10.1111/mice.13119
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014), Generative adversarial nets, Proceedings of Advances in Neural Information Processing Systems, Montreal, Canada, 2672-2680.
- Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. (2017), Unpaired image-to-image translation using cycle-consistent adversarial networks, Proceedings of the IEEE international conference on computer vision, Honolulu, HI, USA, (pp. 2223-2232).
- Shim, S. (2022), CycleGAN based translation method between asphalt and concrete crack images for data augmentation, The Journal of The Korea Institute of Intelligent Transport Systems, 21(5), 171-182 (in Korean). https://doi.org/10.12815/kits.2022.21.5.171
- Huang, B., Kang, F., Li, X., and Zhu, S. (2024), Underwater dam crack image generation based on unsupervised image-to-image translation, Automation in Construction, 163, 105430.
- Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A. (2017), Image-to-image translation with conditional adversarial networks, Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 1125-1134.
- Sushko, V., Schonfeld, E., Zhang, D., Gall, J., Schiele, B., and Khoreva, A. (2020), You only need adversarial supervision for semantic image synthesis, arXiv Preprint arXiv:2012.04781.
- Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., and Catanzaro, B. (2018), High-resolution image synthesis and semantic manipulation with conditional gans, Proceedings of the IEEE conference on computer vision and pattern recognition, Salt Lake City, UT, USA, 8798-8807.
- Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022), High-resolution image synthesis with latent diffusion models, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, New Orleans, LA, USA, 10684-10695.
- Shim, S., and Min, J. (2022), Semantic Segmentation for Multiple Concrete Damage Based on Hierarchical Learning, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(6), 175-181 (in Korean).
- Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021), Lora: Low-rank adaptation of large language models, arXiv preprint arXiv:2106.09685.