• Title/Summary/Keyword: 지붕형 태양광

Search Result 20, Processing Time 0.025 seconds

A Study Analysis on Roof BIPV System Performance of the Apartment Building (공동주택의 지붕용 BIPV시스템 성능 분석 연구)

  • Kim, Seung-Beum;Park, Jung-Lo;Kim, Joo-Heyng;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.127-128
    • /
    • 2012
  • Exhaustion of fossil fuels and continued high oil prices, global warming, climate change and to respond to the development and use of alternative energy technologies is expanding rapidly throughout the world. Recently, character of domestic building is appearing by along with economic growth, high-rise, large size, congestion. For this reason, the amount of electrical energy used in a building is increasing. In this study, the applicability of PV modules that are used as roofing and efficiency analysis, and more from the building of BIPV modules built using the activation of alternative energy sources in Korea are aimed want done.

  • PDF

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

A Study on the Application of BIPV for the Spread of Zero Energy Building (제로에너지 건축물 확산을 위한 건물 일체형 태양광 적용방안 연구)

  • Park, Seung-Joon;Jeon, Hyun-Woo;Lee, Seung-Joon;Oh, Choong-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.189-199
    • /
    • 2021
  • In order to increase the self-reliance rate of new and renewable energy in order to respond to the mandatory domestic zero-energy buildings, the taller the building, the more limited the site area, and installing PV modules on the roof is not enough. Therefore, BIPV (Building integrated photovoltaic, hereinafter BIPV) is the industry receiving the most attention as a core energy source that can realize zero-energy buildings. Therefore, this study conducted a survey on the problems of the BIPV industry in a self-discussing method for experts with more than 10 years of experience of designers, builders, product manufacturers, and maintainers in order to suggest the right direction and revitalize the BIPV industry. Industrial problems of BIPV adjustment are drawn extention range of standard and certification for products, range improvement for current small condition of various kind productions, need to revise standards for capable of accomodating roof-type, color-module and louver-module, necessary of barrier in flow of foreign modules into korea through domestic certification mandatory, difficulty in obtaining BIPV information, request to prevent confusion among participants by exact guidelime about architectural application part of BIPV, and lack of the BIPV definition clearness, support policy, etc. Based on the improvements needed for the elements, giving change and competitiveness impacts aims to present and propose counter measures and direction.

The Performance and Energy Saving Effect of a 2kWp Roof-Integrated Photovoltaic System (주택지붕용 2kWp BIPV시스템의 성능 실험 및 전기 부하 감당에 관한 연구)

  • Lee, Kang-Rock;Oh, Myung-Tack;Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The efficiency of building-integrated photovoltaic(BIPV) system is mainly determined by solar radiation and the temperature of PV modules. The performance of BIPV systems is reported to be different from that of conventional PV systems installed in the open-air. This paper presents the relationship of solar radiation and electricity generation from a 2kWp roof-integrated PV system that is applied as building elements on an experimental house, and the energy saving effect of the BIPV system for a typical house. For the performance evaluation of the BIPV system, it produced a regression equation with measured data for winter days. The regression equation showed that a comparison of the measured electricity generation and the predicted electricity generation of the BIPV system were meaningful. It showed that an annual electricity generation of the system appeared to cover around 52% of an annual electricity consumption of a typical domestic house with the floor area of $96m^2$.

The Economic Feasibility of Building-Integrated Photovoltaics System Installed on the Roof of Residential Building - Focused on Comparison with Construction Cost of BAPV System Depend on Roof Finishing Materials

  • Oh, Byung-Chil
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • Purpose: This study was on the economic feasibility of BIPV system, focused on comparison with construction cost of BAPV system depend on roof finishing materials, and to suggest basic data on the construction cost. Method: Construction cost of BAPV system was calculated, by selecting asphalt single, flat type roof tile, color steel plate, titanium zinc plate as roof finishing material of residential building and by sum up each cost for roof finishing construction and cost for 3kWp-volumed PV module installation. Also, the economic feasibility was analysed quantitatively by comparing the cost for BIPV system construction, installing same volumed PV module instead of roof finishing materials. Result: 1. By installing BIPV system instead of the roof finishing material, the cost of construction falls ; about 19% in case of the titanium zinc plate, which is the most expensive, and about 11% in case of the color steel plate. 2. Reducing amount of the construction cost gets larger because of installing BIPV module instead of the roof finishing material, as the construction cost for roof finishing material gets higher ; therefore, it is more economical than BAPV system in terms of whole cost of construction.

기획특집 - 미래형 도시, 꿈꾸는 탄소 제로도시 개발

  • 환경보전협회
    • Bulletin of Korea Environmental Preservation Association
    • /
    • s.389
    • /
    • pp.8-24
    • /
    • 2010
  • 도시생활과 관련된 교통 주택부문의 온실가스 배출량은 43%를 차지하고 있어 도시에서의 온실가스 저감대책 마련이 시급하며, 저탄소 녹색성장의 시대적 요구에 따라 기후변화 위기에 적극적으로 대응할 수 있는 저탄소 녹색도시 조성이 필요한 실정이다. '저탄소 녹색도시'는 지구온난화 등 기후변화의 주요 원인인 이산화탄소의 배출을 획기적으로 감축하고, 지속가능한 도시기능을 확충하면서 자연과 공생하는 도시를 말한다. 최근의 '저탄소 녹색도시'는 기존의 녹색도시와 또 다른 양상을 보이고 있다. 자원순환과 신재생에너지원의 도입을 주장하고, 탄소상쇄를 위한 에너지 및 자원절감 전략을 중요시 하고 있다. 선진국에서는 이미 주거단지내 소비되는 난방과 전력은 단지내에서 생산되는 신재생에너지를 활용하고 있으며, 모든 주택의 지붕위에 태양광 패널을 설치하고 단지 내 열병합 자가발전소에서 산업폐기물을 소각하여 에너지를 생산함으로써 제로 에너지(Zero Energy)를 실현하고 있다. 선진국 뿐 아니라 전 세계의 이목이 '저탄소 녹색도시'에 집중되고 있으며 저탄소 녹색도시를 조성해야 하는 것은 선택이 아닌 의무가 되고 있다. 우리나라도 2020년 그린홈 100만호 보급을 목표로 주택분야 보급가능 신재생 에너지원을 태양열, 지열, 소형풍력, 연료전지 등으로 다양화하여 안정적 보급 기반을 확보해 가고 있다. 녹색도시를 조성하기 위해서는 저탄소 주택, 저탄소 에너지, 녹색교통, 생태녹지, 물 및 자원순환등 핵심요소들의 적용방안이 검토되어져야 한다. 이에 본지에서는 "저탄소 녹색도시의 해외사례와 국내 적용방향", "그린홈 100만호 보급사업 그간 성과와 발전방향", "온라인 전지자동차의 기술 개발 동향" 내용에 대하여 살펴보고자 한다.

  • PDF

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Assessing the public preference and acceptance for renewable energy participation initiatives - focusing on photovoltaic power (재생에너지 사업 참여에 대한 국민 선호와 수용성 분석 - 태양광 발전을 중심으로)

  • Ham, AeJung;Kang, SeungJin
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.36-49
    • /
    • 2018
  • This study analyzed the public preference and acceptance regarding renewable energy projects through Choice Based Conjoint Analysis. The results show that the surveyed respondents consider the leading authority of the projects, as the most important factor when considering participating in renewable energy initiatives. Following this, the mode of participation and profit distribution and the power plant location are also viewed as important, whereas participation through decision making regarding the projects was less important. Also when participating in renewable energy projects, respondents tend to prefer to financially participating through loans or owning shares rather than volunteering support for the business such as sharing information, stating one's views, or providing cooperation and coordination. Therefore, the focus is on distributional justice, such as financial investment and profit distribution, rather than procedural justice, for instance decision making. When analyzing the part-worths utilities for the participation attribute, the respondents most preferred to receiving dividends based on earnings by owning shares with the local government in charge of the entire projects. As a consequence, the results suggest that it is important to have local government get involved and have trust-worthy governing systems in place for the initiation of the public participating-renewable energy projects.

A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades (건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

Fabrication of a-Si:H/a-Si:H Tandem Solar Cells on Plastic Substrates (플라스틱 기판 위에 a-Si:H/a-SiGe:H 이중 접합 구조를 갖는 박막 태양전지 제작)

  • Kim, Y.H.;Kim, I.K.;Pyun, S.C.;Ham, C.W.;Kim, S.B.;Park, W.S.;Park, C.K.;Kang, H.D.;You, C.;Kang, S.H.;Kim, S.W.;Won, D.Y.;Choi, Y.;Nam, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.104.1-104.1
    • /
    • 2011
  • 가볍고, 유연성(flexibility)을 갖는 박막(thin film)형 플랙서블 태양전지(flexible solar cell)는 상황에 따른 형태의 변형이 가능하여, 휴대가 간편하고, 기존 혹은 신규 구조물의 지붕(rooftop)등에 설치가 용이하여, 차세대 성장 동력 분야에서 각광받고 있다. 그러나 아직까지 플랙서블 태양전지는 제작시 열에 의한 기판의 변형, 기판 이송시 너울 현상, 대면적 패터닝(patterning) 기술 등 많은 어려움 등으로 웨이퍼나 글라스 기판에 제조된 태양전지 대비 낮은 광전환 효율을 갖는다. 따라서 본 연구에서는 플랙서플 태양전지 성능개선을 위해 3.5세대급 ($450{\times}450cm^2$) 스퍼터(sputter), 금속유기 화학기상장치 (MOCVD), 플라즈마 화학기상장치 (PECVD), 레이저 가공장치 (Laser scriber)를 이용하여 a-Si:H/a-SiGe:H 이중접합(tandem)을 갖는 태양전지를 제작하였고, 광 변환효율 특성을 평가하였다. 전도도(conductivity), 라만(Raman)분광 및 UV/Visible 분광 분석을 통하여 박막의 전기적, 구조적, 광학적 물성을 평가하여 단위박막의 물성을 최적화 했다. 또한 제작된 태양전지는 쏠라 시뮬레이터 (Solar Simulator)를 이용하여 성능 평가를 수행하였고, 상/하부층의 전류 정합 (current matching)을 위해 외부양자효율 (external quantum efficiency) 분석을 수행하였다. 제작된 이중접합 접이식 태양전지로 소면적($0.25cm^2$)에서 8.7%, 대면적($360cm^2$ 이상) 8.0% 이상의 효율을 확보하였으며, 성능 개선을 위해 대면적 패턴 기술 향상 및 공정 기술 개선을 수행 중이다.

  • PDF