• Title/Summary/Keyword: 지반-말뚝-구조물 상호작용

Search Result 56, Processing Time 0.025 seconds

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation- Soil system Excited with the horizontal Motion (지반의 비선형 특성이 수평방향 운동을 받는 기초지반 체계의 동적강성에 미치는 영향)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.55-65
    • /
    • 2000
  • 구조물 지진해석을 위한 구조물 -지반 상호작용 해석에서도 비선형 지반 특성을 고려한 비선형해석이 요구되고 있어 구조물 비선형 지진 해석을 위해 기초 지반에 대한 수평방향 비선형 해석을 수행하였다. 기초지반은 UBC 분류에서 규정한 보통지반인 Sn 지반과 연약지반인 SE 지반을 고려하였고, 지반의 비선형 특성은 Ramberg-Osgood 모델을 이용하였다. 비선형 지반이 기초지반 수평 및 회전 동적 강성 및 감쇠비에 미치는 영향을 조사하기 위하여 얕은 기초와 묻힌기초에 대해 기초 크기, 지반깊이 및 말뚝유무에 따른 동적 강성 및 감쇠비 변화를 조사하였는데, 지반의 비선형 특성이 기초지반의 선형 수평 및 회전 강성과 감쇠비를 크게 감소 또는 증가시키는 것으로 나타났으며, 기초크기, 지반깊이 및 말뚝유무의 영향도 큰 것으로 나타나 구조물 지진해석시 기초크기, 지반깊이 및 말뚝유무와 함께 지반의 비선형성도 고려하는 것이 필요한 것으로 판단되었다.

  • PDF

A Study on the Behavior of High-rise Buildings Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 고층 구조물의 거동에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.243-251
    • /
    • 2005
  • In the seismic design the pile foundation system of the buildings generally have been modeled to have a fixed end for its convenience and conservativeness. But it is necessary to consider the soil-structure interaction for more reliable design. In this study, the framed tube building and brace tube building with pile foundation system under earthquake were analyzed considering soil-structural interaction by 3 pile foundation modeling methods; fixed-end model, 6 springs model and p-y springs model. And 2 soil conditions were used in analysis. For each cases, displacements, drifts, maximum stress, periods and 1st mode mass participation ratios were compared.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

A Study of Characteristics of Soil-Pile-Structure Interaction Behavior on the Frequency Contents of the Seismic Waves (지진파의 주파수 특성에 따른 지반-말뚝-구조물 상호작용계의 거동 특성 분석)

  • 이종우;이필규;김문겸;김민규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.295-308
    • /
    • 2004
  • In this study, several Soil-Structure-Interaction (SSI) analyses were performed using the developed FE-BE coupling method and the seismic response behavior of the structure's systems was determined. For the verification of the fundamental solution which is used in this analysis method, a dynamic analysis of the homogeneous ground was performed and it was compared to the results of Estorff et al. In order to verify the seismic response analysis, the results are compared with those of another commercial code. Several kindd of SSI analyses were performed and the seismic response associated with the rile foundation, seismic waves and a consideration of the ground nonlinearity were determined. As a result, it was found that the pile foundations didn't greatly helpful during the seismic event.

Dynamic Analysis of Soil-Pile-Structure Interaction Considering a Complex Soil Profile (복잡한 지반층을 고려한 지반-말뚝-구조물의 상호작용 동해석)

  • Park, Jang-Ho;Park, Jae-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • The precise analysis of soil-pile-structure interaction requires a proper description of soil layer, pile, and structure. In commonly used finite element simulations, mesh boundaries should match the material discontinuity line. However, in practice, the geometry of soil profiles and piles may be so complex that mesh alignment becomes a wasteful and difficult task. To overcome these difficulties, a different integration method is adopted in this paper, which enables easy integration over a regular element with material discontinuity regardless of the location of the discontinuity line. By applying this integration method, the mesh can be generated rapidly and in a highly structured manner, leading to a very regular stiffness matrix. The influence of the shape of the soil profile and piles on the response is examined, and the validity of the proposed soil-pile structure interaction analysis method is demonstrated through several examples. It is seen that the proposed analysis method can be easily used on soil-pile-structure interaction problems with complex interfaces between materials to produce reliable results regardless of the material discontinuity line.

The Behavior of the Cast-in-place Pile Socketed in Rock Considering Soil-Structure Interaction (지반-구조뭍간 상호작용을 고려한 암반에 근입된 현장타설말뚝의 거동)

  • 최진오;권오성;김명모
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.211-222
    • /
    • 2000
  • The design values of rock socketed pile related with properties of rock mass are not clearly established. However, the drilled shafts socketed in rock are widely used as the foundation of large scaled structure. In this study, the characteristics of behavior of rock socketed pile is researched, and the properties of interface between pile and rock considering soil-structure interaction are evaluated for numerical modeling of rock socketed pile based on the previous researches. Based on the properties of interface and rock mass, the behaviors of rock socketed piles are numerically modeled and compared with field measurement. To verify the numerical analysis, a micro pile socketed in rock is modeled and the results of numerical analysis are compared with field measurement. The numerical results show a good agreement with field measured data, especially in terms of load transfer characteristics.

  • PDF

The Behavior of the Cast-in-place Pile Socketed in Rock Considering Soil-Structure Interaction (지반-구조물간 상호작용을 고려한 암반에 근입된 현장타설말뚝의 거동)

  • 최진오;권오성;김명모
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.457-468
    • /
    • 2000
  • The design values of rock socketed pile related with properties of rock mass are not clearly established. However, the drilled shafts socketed in rock are widely used as the foundation of large scaled structure. In this study, the characteristics of behavior of rock socketed pile is researched, and the properties of interface between pile and rock considering soil-structure interaction are evaluated for numerical modeling of rock socketed pile based on the previous researches. Based on the properties of interface and rock mass, the behaviors of rock socketed piles are numerically modeled and compared with field measurement. To verify the numerical analysis, a micro pile socketed in rock is modeled and the results of numerical analysis are compared with field measurement. The numerical results show a good agreement with field measured data, especially in terms of load transfer characteristics.

  • PDF

Seismic Response of Structure on Flexible Foundation (유연한 기초 위에 세워진 구조물의 지진거동)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1997
  • Seismic analyses of structures were carried out in the past assuming a right base and Ignoring the characteristics of foundations and the properties of the underlying soil. Resent soil-structure interaction studies show that seismic response of structure can be affected significantly by these fators. Typical effects of the soil-structure interaction are the kinematic interaction of a rigid massiess foundation and the inertial interaction between underlying soil and structure. The kinematic interaction effect is particularly important for embedded foundations and can be ignored for surface foundations with vertically propagating waves. In this study, seismic response of structure was investigated with four buildings in Mexico City considering only the inertial interaction effect and using the E-W components of the 1985 Mexico City earthquake records. The study was carried out for surface foundations and pile foundations with linear and nonlinear soil conditions, comparing the results with those of the rigid base.

  • PDF

Dynamic Behavior of Group Piles according to Pile Cap Embedded in Sandy Ground (사질토 지반에서 말뚝 캡의 근입에 따른 무리말뚝의 동적거동)

  • Kim, Seongho;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.35-41
    • /
    • 2018
  • Dynamic interaction of the ground-foundation-structure must be considered for safety of earthquake resistant design for piles supported structures. The p-y curve, which is proposed in the static load and cyclic load cases, is used for the earthquake resistant design of piles. The p-y curve does not consider dynamic interaction of the ground-foundation-structure on dynamic load cases such as earthquake. Therefore, it is difficult to apply the p-y curve to earthquake resistant design. The dynamic p-y curve by considering dynamic interaction of the ground-foundation-structure has been studied, and researches had same conditions that pile caps were on the ground surface and superstructures were added on pile caps for the simple weight. However, group piles are normally embedded into the ground except for marine structures, so it seems that the embedding the pile cap influences on the dynamic p-y curve of group piles. In this study, the shaking table model test was conducted to confirm dynamic behavior of group piles by the embedded pile cap in the ground. The result showed that dynamic behavior was different between two cases by embedding the pile cap or not.

SSI Effects on the Dynamic Response of Structures (구조물-지반 상호작용이 구조물의 동적거동에 미치는 영향)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1993
  • Recently it is recognized that the effects of structure-soil interaction(SSI) on the response of structures are important in the dynamic analysis of structures. In this study, theoretical and experimental investigations were performed to study the SSI effects(mainly inertial interaction) on the dynamic response of buildings utilizing the finite element foumulation. Theoretical studies were performed with two idealized buildings(stubby one and slender one) built on the homogeneous soil layer and having the small embedment ratio. Experimental investigations were also carried out for two buildings built on the pile foundation in Mexico City, experienced the 1985 Earthquake. The results of this study show that the SSI effects are significant on the response of structures due to the change of fundamental frequency and effective damping ratio, and that it is necessary to include the SSI effects on the dynamic analysis of structures.

  • PDF