• Title/Summary/Keyword: 지반구조물 상호작용

Search Result 310, Processing Time 0.028 seconds

Comparison Study on the Residual Excess Pore Water Pressure Observed in seabed (해저지반에서 계측된 잔류과잉간극수압에 대한 비교 연구)

  • Yang, Soonbo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • The interaction among wave, seabed and marine structure is an important issue in coastal engineering as well as geotechnical engineering. Understanding variations of stresses and pore water pressures generated in seabed induced by waves is important for civil engineers who have to design the foundation for various marine structures and verify the instability of seabed. In the matters on seabed instability, particularly, in the case of wave-induced liquefaction of seabed, it is turned out there are two different mechanisms through previous studies. These are caused by the transient or oscillatory nature and the residual or progressive nature of excess pore water pressure generated in seabed, respectively. In this study, it is analyzed dynamic characteristics of soils sampled in seabed around the port of Kochi, Japan, through the dynamic triaxial tests and the residual excess pore water pressure in the seabed induced by seepage force of wave. In addition, the calculated residual excess pore water pressures were compared with the field data observed in the port of Kochi.

Infinite Elements for Soil-Structure Interaction Anaysis (지반-구조물의 상호작용 해석을 위한 무한요소)

  • 양신추;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.22-27
    • /
    • 1989
  • This paper presents a study of soil-structure interaction problems using infinite elements. The infinite elements are formulated for homogeneous and layered soil media, based on approximate expressions for three components of propagating waves, namely Rayleigh, compressive and shear waves. The integration scheme which was proposed for problems with single wave component by Zienkiewicz is expanded to the multi-wave problem. Verifications are carried out on rigid circular footings which are placed on and embedded in elastic half space. Numerical analysis is performed for a containment structure of a nuclear power plant subjected seismic excitation.

  • PDF

Earthquake Response Analysis of Bridges with Soil-Structure Interaction and Pier Nonlinearity (지반-구조물 상호작용과 교각의 비선형성을 고려한 교량의 지진응답해석)

  • 이종세;최준성;권오신
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.415-421
    • /
    • 2003
  • With the increasing possibility of earthquake occurrence, seismic safety of bridges has become one of the most important social issues in Korea. In this study, a nonlinear earthquake response analysis is carried out for a real bridge by incorporating soil-structure interaction and pier nonlinearity. The material nonlinearity of the bridge pier is realized by utilizing SAP2000 whereas the soil-structure interaction is analized in time domain by adapting KIESSI. The numerical results are compared to those of the models without considering the effects.

  • PDF

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

A Study on Modeling of the Ground Reinforcement under a Pipe Joint Subjected to Differential Settlement (부등침하를 받는 매설관 기초지반 보강 모델링 연구)

  • 손준익;홍성완
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a pipe joint. The soil-reinforcement interaction helps to minimize the stress concentration at joint. The settlement pattern and the earth pressure variation have been evaluated under the pipeline subjected to differential settlement. The pipeline is fixed at one side with the other side set free being loaded with a uniform surface loading. The problem has been studied by means of laboratory model test and flite element technique, and the analysis results are compared for both non-reinforced and reinforced cases to evaluate the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level (지하수위 변화에 따른 호안 주변 지반내의 흐름특성)

  • Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.408-417
    • /
    • 2007
  • Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.

A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models (지반-구조물 연계모델의 등가감쇠값에 관한 연구)

  • Park, Hyung Ghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.241-248
    • /
    • 1987
  • The theoretical backgrounds of the several methods were surveyed and reviewed to fin out the adequate one to determine equivalent modal damping values in solving the dynamic problem of soil-structure interaction by mode superposition method. Furthermore the rigorous damping matrix of equation of motion was obtained through component mode synthesis technique and used in direct integration of the equation. The analytical results by direct integration method were compared with those of mode superposition approach using the various sets of equivalent modal damping values calculated by the methods to be reviewed. Two types of superstructures and four kinds of subsurface conditions were considered and combined to make soil-structure coupled models. It was realized that dissipating energy method gives the equivalent modal damping values which lead the most similar results to direct integration ones. In case of fixed base, the responses of all methods except stiffness weighted approach are almost equal to those of direct integration method.

  • PDF

Numerical analyses for mechanical behavior of cut-and-cover tunnel with precast arch type (프리캐스트 아치형 개착식 터널의 역학적 거동에 관한 수치해석)

  • Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2009
  • The thickness of the material can be thinned because arch cut-and-cover tunnel has the support mechanism by the axial force, and the ground reaction force due moderate deformation can be expected thereby making it be dynamically advantageous, therefore the arch cut-and-cover tunnel has become more widely used. An important characteristic of the arch cut-and-cover tunnel is that the thickness of the material can be thinned because precast arch type has the support mechanism by the axial force. However, there is a different stress state surrounding the structures between normally excavated tunnels and cut-and-cover tunnels, it should be considered at designing. Therefore, finite element method was carried out to examine the mechanical behavior of the precast arch cut-and-cover tunnel considering construction procedure.

Parametric Study on Seismic Earth Pressure Through Dynamic Numerical Analyses of Basements (동적 수치해석을 통한 베이스먼트의 지진토압에 대한 매개변수 연구)

  • Park, Du-Hee;Lee, Choong-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.19-32
    • /
    • 2024
  • Dynamic earth pressure analysis is a key parameter in the seismic design of subterranean structures. However, existing solutions often lack a holistic approach, ignoring crucial elements like soil-structure interaction, the relative flexibility ratio (F) between the soil and a structure, the racking ratio (R) of a structure, and the structure aspect ratio (L/H). In this study, we conducted a thorough suite of dynamic numerical analyses on basements to understand how these factors influence seismic earth pressure. We found that structures with high aspect ratios and low flexibility were more susceptible to seismic pressure than those with lower aspect ratios and greater flexibility. Consequently, we recommend taking the aspect ratio and flexibility into account when estimating the seismic or dynamic earth pressure on basements and exercising caution when using traditional solutions proposed for retaining walls.

The Effect of Flexibility for the Offshore Wind Turbine System (해상풍력시스템의 거동 해석을 위한 지반의 연성효과 고려방안)

  • Choi, Changho;Han, Jintae;Cho, Samdeok;Jang, Youngeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.59-66
    • /
    • 2013
  • The foundation of offshore wind energy system is generally assumed to be fixed-ended in system analysis for the convenience of calculation and, correspondingly, it might lead a conservative design. If soil-foundation interaction get involved with the analysis, the system characteristics such as natural frequency, shear force, moment and displacement are expected to differ from those of fixed-ended case. In this study, the analysis have been conducted to identify how the response of offshore wind turbine varies upon considering the foundation flexibility with soil-foundation interaction. The model taking account of the flexibility of foundation was compared with fixed-ended model at the seabed. The flexibilities of foundation were obtained by coupled spring model at the seabed and Winkler Spring Model with soil depth. As a result, the first mode of the whole system with the Winkler Spring Model was decreased relative to that with the fixed-ended model. The results showed that the effect of foundation flexibility should be considered when designing the offshore wind energy system.