• Title/Summary/Keyword: 지능 강화

Search Result 608, Processing Time 0.033 seconds

Development of Artificial Intelligence Education Contents based on TensorFlow for Reinforcement of SW Convergence Gifted Teacher Competency (SW융합영재 담당교원 역량 강화를 위한 텐서플로우 기반 인공지능 교육 콘텐츠 개발)

  • Jang, Eunsill;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.167-177
    • /
    • 2019
  • The enhancement of national competitiveness in future society is the discovery and training of excellent SW convergence gifted. In order to cultivate these SW convergence gifted, reinforcing competence of teachers in charge should be made first. Therefore, in this paper, artificial intelligence education contents, one of the core technologies of the 4th Industrial Revolution era, were developed to reinforcing competence of SW convergence gifted teachers. After setting the direction of artificial intelligence education content, we constructed educational content suitable for secondary SW convergence gifted education, and designed and developed it in detail. The composition of artificial intelligence education content consists of machine learning and tensor flow understanding, linear regression machine learning implementation for numerical prediction, and multiple linear regression-based price prediction machine learning implementations. The developed educational contents were verified by experts with qualitative aspects. In the future, we expect that the educational content of artificial intelligence proposed in this paper will be useful for strengthening the ability of SW convergence gifted teachers.

Optimal Route Finding Algorithms based Reinforcement Learning (강화학습을 이용한 주행경로 최적화 알고리즘 개발)

  • 정희석;이종수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.157-161
    • /
    • 2003
  • 본 논문에서는 차량의 주행경로 최적화를 위해 강화학습 개념을 적용하고자 한다. 강화학습의 특징은 관심 대상에 대한 구체적인 지배 규칙의 정보 없이도 최적화된 행동 방식을 학습시킬 수 있는 특징이 있어서, 실제 차량의 주행경로와 같이 여러 교통정보 및 시간에 따른 변화 등에 대한 복잡한 고려가 필요한 시스템에 적합하다. 또한 학습을 위한 강화(보상, 벌칙)의 정도 및 기준을 조절해 즘으로써 다양한 최적주행경로를 제공할 수 있다. 따라서, 본 논문에서는 강화학습 알고리즘을 이용하여 다양한 최적주행경로를 제공해 주는 시스템을 구현한다.

  • PDF

Control of Intelligent Characters using Reinforcement Learning (강화학습을 이용한 지능형 게임캐릭터의 제어)

  • Shin, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.91-97
    • /
    • 2007
  • Game program had been classed by 3D or on-line game etc, and engine and game programming simply, But, game programmer's kind more classified new, Artifical Intelligence game programmer's role is important. This paper makes game character study and moved by intelligence using reinforcement learning algorithm. Fought with character enemy using developed game, Confirmed whether embodied game character is facile by intelligence, As result of an experiment, we know, studied character defends excellently than randomly moved character.

  • PDF

Personalized web searching with Reinforcement Learning (강화학습을 사용한 개인화된 웹 검색)

  • 이승준;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.259-262
    • /
    • 2001
  • 본 논문에서는 사용자의 취향에 맞춰 특정 웹 문서를 탐색하는 개인화된 웹 검색기의 구현을 다룬다. 사용자의 취향은 사용자의 직접적인 평가와 사용자의 검색 과정을 통해 얻어지는 간접적인 평가를 사용한 강화 학습을 사용하여 학습된다. 웹 문서의 검색은 사용자의 취향과 현재 문서와의 관련 도를 보상으로 사용한 강화 학습을 통하여 이루어진다.

  • PDF

Locomotion of Crawling Robots Based on Reinforcement Learning and Meta-Learning (강화학습 기법과 메타학습을 이용한 기는 로봇의 이동)

  • Mun, Yeong-Jun;Jeong, Gyu-Baek;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.395-398
    • /
    • 2007
  • 최근 인공지능 분야에서는 강화학습(Reinforcement Learning)에 대한 관심이 크게 증폭되고 있으며, 여러 관련 분야에 적용되고 있다. 본 논문에서는 강화학습 기법 중 액터-크리틱 계열에 속하는 RLS-NAC 알고리즘을 활용하여 Kimura의 기는 로봇의 이동을 다룰 때에 중요 파라미터의 결정을 위하여 meta-learning 기법을 활용하는 방안에 고려한다.

  • PDF

Suspension Control using Reinforcement Learning (강화학습에 의한 현가장치의 제어)

  • Jeong, Gyu-Baek;Mun, Yeong-Jun;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.163-166
    • /
    • 2007
  • 최근에 국내외의 인공지능 분야에서는, 강화학습(reinforcement learning)에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 능동형 현가장치(active-suspension)의 제어를 위하여 RLS 기반 NAC(natural actor-critic)을 활용한 강화학습 기법을 적용해보고, 그 성능을 시뮬레이션을 통해 확인해본다.

  • PDF

Strategy of Reinforcement Learning in Artificial Life (인공생명의 연구에 있어서 강화학습의 전략)

  • 심귀보;박창현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.257-260
    • /
    • 2001
  • 일반적으로 기계학습은 교사신호의 유무에 따라 교사학습과 비교사학습, 그리고 간접교사에 의한 강화학습으로 분류할 수 있다. 강화학습이란 용어는 원래 실험 심리학에서 동물의 학습방법 연구에서 비롯되었으나, 최근에는 공학 특히 인공생명분야에서 뉴럴 네트워크의 학습 알고리즘으로 많은 관심을 끌고 있다. 강화학습은 제어기 또는 에이전트의 행동에 대한 보상을 최대화하는 상태-행동 규칙이나 행동발생 전략을 찾아내는 것이다. 본 논문에서는 최근 많이 연구되고 있는 강화학습의 방법과 연구동향을 소개하고, 특히 인공생명 연구에 있어서 강하학습의 중요성을 역설한다.

  • PDF

A Study of Real Time Object Tracking using Reinforcement Learning (강화학습을 사용한 실시간 이동 물체 추적에 관한 연구)

  • 김상헌;이동명;정재영;운학수;박민욱;김관형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.87-90
    • /
    • 2003
  • 과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.

  • PDF

A Study on Policy Acceptance Intention to Use Artificial Intelligence-Based Public Services: Focusing on the Influence of Individual Perception & Digital Literacy Level (인공지능 기반 공공서비스 정책수용 의도에 관한 연구: 개인의 인식과 디지털 리터러시 수준이 미치는 영향을 중심으로)

  • Jang, Changki;Sung, WookJoon
    • Informatization Policy
    • /
    • v.29 no.1
    • /
    • pp.60-83
    • /
    • 2022
  • The purpose of this study is to empirically analyze the effect of individual perception of artificial intelligence and the level of digital literacy on the acceptance of artificial intelligence-based public services. For empirical analysis, a research model was set up based on the technology acceptance model and planned behavior theory using survey data of 2017 and analyzed through structural equations. To summarize the results of the analysis, firstly, the positive perception of individuals about artificial intelligence technology plays a role in reinforcing attitudes toward benefits and reducing concerns about public service in which artificial intelligence technology has been introduced. Secondly, the level of digital literacy reinforces both benefits and concerns about artificial intelligence technology, but it was found that the intention to use public services was reinforced through the benefits of artificial intelligence technology perceived by individuals, rather than privacy concerns about artificial intelligence technology. Thirdly, it was confirmed that the perceived benefits of individuals on artificial intelligence technology reinforced the intention to use public civil services, and privacy concerns negatively influenced the intention to use. It was confirmed that the influence of a perceived ease of use and usefulness, as opposed to privacy concerns, further reinforces the intention to use. Both citizens' positive perceptions regarding the accuracy and reliability of information provided through artificial intelligence technology and institutional complementation of responsibility for errors caused by artificial intelligence technology are strengthened, and technical problems related to privacy protection are solved.

The Analysis of Reinforcement Learning Environment for Intelligent Ship Navigation Agents (지능형 선박 항해 에이전트 개발을 위한 강화학습 환경 분석)

  • Park, Se-Kil;Oh, Jae-Yong;Kim, Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.3-4
    • /
    • 2019
  • 본 논문에서는 복잡한 해상교통 환경 하에서도 해양 안전을 도모할 수 있는 강화학습 기반 지능형 선박 항해 에이전트 개발의 사전단계로서 기존의 강화학습 환경을 분석하였다. 강화학습 기반 접근법은 선박 항해 에이전트 스스로가 복잡하고 동적인 해상교통 환경을 이해하고 주어진 목표를 달성할 수 있도록 도와주는데, 이를 위해서는 에이전트 자신을 제외한 모든 사항들이 정의되는 환경을 보다 정확하고 효과적으로 개발하는 것이 매우 중요하다. 실제 해상교통 환경은 학습 환경으로의 모델링 및 에이전트 학습의 난이도가 매우 높은 환경으로 학습환경이 가질 수 있는 여러 속성들을 적절히 설정하여 선박 항해 에이전트의 활용 목적에 맞는 가성비 높은 환경을 구축하는 것이 바람직하다.

  • PDF