• Title/Summary/Keyword: 지능형 데이터 분석

Search Result 639, Processing Time 0.035 seconds

Building the Outlier Candidate Discrimination Training Data based on Inventory for Automatic Classification of Transferred Records (이관 기록물 분류 자동화를 위한 목록 기반 이상치 판별 학습데이터 구축)

  • Jeong, Ji-Hye;Lee, Gemma;Wang, Hosung;Oh, Hyo-Jung
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.1
    • /
    • pp.43-59
    • /
    • 2022
  • Electronic public records are classified simultaneously as production, a preservation period is granted, and after a certain period, they are transferred to an archive and preserved. This study intends to find a way to improve the efficiency in classifying transferred records and maintain consistent standards. To this end, the current record classification work process carried out by the National Archives of Korea was analyzed, and problems were identified. As a way to minimize the manual work of record classification by converging the required improvement, the process of identifying outlier candidates based on a list consisting of classified information of the transferred records was proposed and systemized. Furthermore, the proposed outlier discrimination process was applied to the actual records transferred to the National Archives of Korea. The results were standardized and constructed as a training data format that can be used for machine learning in the future.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.

Novel Collision Warning System using Neural Networks (신경회로망을 이용한 새로운 충돌 경고 시스템)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyun;Hwang, Jaeho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there are many researches on active safety system of intelligent vehicle. To reduce the probability of collision caused by driver's inattention and mistakes, the active safety system gives warning or controls the vehicle toward avoiding collision. For the purpose, it is necessary to recognize and analyze circumstances around. In this paper, we will treat the problem about collision risk assessment. In general, it is difficult to calculate the collision risk before it happens. To consider the uncertainty of the situation, Monte Carlo simulation can be employed. However it takes long computation time and is not suitable for practice. In this paper, we apply neural networks to solve this problem. It efficiently computes the unseen data by training the results of Monte Carlo simulation. Furthermore, we propose the features affects the performance of the assessment. The proposed algorithm is verified by applications in various crash scenarios.

Towards a Machine Learning Approach for Monitoring Urban Morphology - Focused on a Boston Case Study - (도시 형태 변화 모니터링을 위한 머신러닝 기법의 가능성 - 보스톤 사례연구를 중심으로 -)

  • Hwang, Jie-Eun
    • Design Convergence Study
    • /
    • v.16 no.5
    • /
    • pp.125-140
    • /
    • 2017
  • This study explores potential capability of a machine learning approach for monitoring urban morphology based on an evident case study. The case study conveys year 2006 investigations on interpreting urban morphology of Boston Main Streets by applying a machine learning approach. From the lesson of the precedent study, in 2016, another field research and interview was conducted to compare changes in urban situation, data commons culture, and technology innovation during the decade. This paper describes open possibilities to advance urban monitoring for morphological changes. Most of all, a multi-participatory data platform enables managing urban data system in real time. Second, collaboration with machines with artificial intelligence can intervene the framework of the urban management system as well as transform it through new demands of innovative industries. Recently, urban regeneration became a dominant urban planning strategy in Korean, therefore, urban monitoring is on demand. It is timely important to correspond to in-situ problems based on empirical research.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

Time series and deep learning prediction study Using container Throughput at Busan Port (부산항 컨테이너 물동량을 이용한 시계열 및 딥러닝 예측연구)

  • Seung-Pil Lee;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.391-393
    • /
    • 2022
  • In recent years, technologies forecasting demand based on deep learning and big data have accelerated the smartification of the field of e-commerce, logistics and distribution areas. In particular, ports, which are the center of global transportation networks and modern intelligent logistics, are rapidly responding to changes in the global economy and port environment caused by the 4th industrial revolution. Port traffic forecasting will have an important impact in various fields such as new port construction, port expansion, and terminal operation. Therefore, the purpose of this study is to compare the time series analysis and deep learning analysis, which are often used for port traffic prediction, and to derive a prediction model suitable for the future container prediction of Busan Port. In addition, external variables related to trade volume changes were selected as correlations and applied to the multivariate deep learning prediction model. As a result, it was found that the LSTM error was low in the single-variable prediction model using only Busan Port container freight volume, and the LSTM error was also low in the multivariate prediction model using external variables.

  • PDF

Study on Disaster Response Strategies Using Multi-Sensors Satellite Imagery (다종 위성영상을 활용한 재난대응 방안 연구)

  • Jongsoo Park;Dalgeun Lee;Junwoo Lee;Eunji Cheon;Hagyu Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.755-770
    • /
    • 2023
  • Due to recent severe climate change, abnormal weather phenomena, and other factors, the frequency and magnitude of natural disasters are increasing. The need for disaster management using artificial satellites is growing, especially during large-scale disasters due to time and economic constraints. In this study, we have summarized the current status of next-generation medium-sized satellites and microsatellites in operation and under development, as well as trends in satellite imagery analysis techniques using a large volume of satellite imagery driven by the advancement of the space industry. Furthermore, by utilizing satellite imagery, particularly focusing on recent major disasters such as floods, landslides, droughts, and wildfires, we have confirmed how satellite imagery can be employed for damage analysis, thereby establishing its potential for disaster management. Through this study, we have presented satellite development and operational statuses, recent trends in satellite imagery analysis technology, and proposed disaster response strategies that utilize various types of satellite imagery. It was observed that during the stages of disaster progression, the utilization of satellite imagery is more prominent in the response and recovery stages than in the prevention and preparedness stages. In the future, with the availability of diverse imagery, we plan to research the fusion of cutting-edge technologies like artificial intelligence and deep learning, and their applicability for effective disaster management.

Performance evaluation of WAVE communication systems under a high-speed driving condition in a highway (고속주행 환경에서의 WAVE 통신장치 성능분석)

  • Song, Yoo Seung;Lee, Sang Woo;Oh, Hyun Seo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.96-102
    • /
    • 2013
  • In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. The development of ITS services is accelerating by V2X communication technologies for high-speed vehicles. In this paper, WAVE communication devices based on the IEEE802.11p standard is introduced as a solution of V2X communication technologies. The H/W and S/W structures of the WAVE communication device and the characteristics of RF/antenna are described. The performance is evaluated in the test road by measuring throughput, PER and latency. The implemented WAVE communication device has 6~7 Mbps throughput with 10% PER at 1km coverage. The packet latency is less than 3ms for the whole test road. It is shown that the implemented WAVE technology is satisfactory to provide ITS services and Internet video-streaming services.

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.21-30
    • /
    • 2024
  • This research aims to design a system capable of generating real web pages based on deep learning and big data, in three stages. First, a classification system was established based on the industry type and functionality of e-commerce websites. Second, the types of components of web pages were systematically categorized. Third, the entire web page auto-generation system, applicable for deep learning, was designed. By re-engineering the deep learning model, which was trained with actual industrial data, to analyze and automatically generate existing websites, a directly usable solution for the field was proposed. This research is expected to contribute technically and policy-wise to the field of generative AI-based complete website creation and industrial sectors.

A Study on the Korea Future Internet Promotion Plan for Cyber Security Enhancement (사이버 보안 강화를 위한 한국형 미래 인터넷 추진 방안에 관한 연구)

  • Lim, Gyoo-Gun;Jin, Hai-Yan;Ahn, Jae-Ik
    • Informatization Policy
    • /
    • v.29 no.1
    • /
    • pp.24-37
    • /
    • 2022
  • Amid rapid changes in the ICT environment attributed to the 4th Industrial Revolution, the development of information & communication technology, and COVID-19, the existing internet developed without considering security, mobility, manageability, QoS, etc. As a result, the structure of the internet has become complicated, and problems such as security, stability, and reliability vulnerabilities continue to occur. In addition, there is a demand for a new concept of the internet that can provide stability and reliability resulting from digital transformation-geared advanced technologies such as artificial intelligence and IoT. Therefore, in order to suggest a way of implementing the Korean future internet that can strengthen cybersecurity, this study suggests the direction and strategy for promoting the future internet that is suitable for the Korean cyber environment through analyzing important key factors in the implementation of the future internet and evaluating the trend and suitability of domestic & foreign research related to future internet. The importance of key factors in the implementation of the future internet proceeds in the order of security, integrity, availability, stability, and confidentiality. Currently, future internet projects are being studied in various ways around the world. Among numerous projects, Bright Internet most adequately satisfies the key elements of future internet implementation and was evaluated as the most suitable technology for Korea's cyber environment. Technical issues as well as strategic and legal issues must be considered in order to promote the Bright Internet as the frontrunner Korean future internet. As for technical issues, it is necessary to adopt SAVA IPv6-NID in selecting the Bright Internet as the standard of Korean future internet and integrated data management at the data center level, and then establish a cooperative system between different countries. As for strategic issues, a secure management system and establishment of institution are needed. Lastly, in the case of legal issues, the requirement of GDPR, which includes compliance with domestic laws such as Korea's revised Data 3 Act, must be fulfilled.