• Title/Summary/Keyword: 지구 자기장

Search Result 170, Processing Time 0.039 seconds

GEO-KOMPSAT-2A KSEM Requirements and its System Design (정지궤도복합위성 우주기상탑재체 개발 요구사항 및 시스템 설계)

  • Jin, Kyoung-Wook;Jang, Sung-Soo;Choi, Jung-Su;Yang, Koon-Ho;Seon, Jongho;Chae, Kyu-Sung;Park, Junyong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2014
  • GEO-KOMPSAT-2 (GK2) program, which develops two advanced geostationary satellites simultaneously after the successful COMS mission (2010~present), is on going. An improved next generation meteorological payload and space weather sensors will be equipped on the GK2A. The space weather sensor will be the Korea's first geostationary space environment monitoring payload. Main objectives of the project are its applications into space weather forecasting and pre-warning of hazardous space weather by monitoring physical phenomena such as distribution of high energetic particles, Earth's magnetic fields and charging currents on the spacecraft at a geostationary orbit using the three space weather sensors(energetic particle detector, magnetometer and charging monitor). The summary of the GK2A space weather sensor development and its system and interface designs were described in the paper.

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(II): SINGLE EVENT EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(II)- SINGLE EVENT 영향 중심으로 -)

  • 백명진;김대영;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.163-173
    • /
    • 2001
  • In this paper, space radiation environment and single event effect(SEE) have been analyzed for the KOMPSAT-2 operational orbit. As spacecraft external and internal space environment, trapped proton, SEP(solar energetic particle) and GCR(galactic cosmic ray) high energy Protons and heavy ions spectrums are analyzed. Finally, SEU and SEL rate prediction has been performed for the Intel 80386 microprocessor CPU that is planned to be used in the KOMPSAT-2. As the estimation results, under nominal operational condition, it is predicted that trapped proton and high energetic proton induced SBU effect will not occur. But, it is predicted that heavy ion induced SEU can occur several times during KOMPSAT-2 3-year mission operation. KOMPSAT-2 has been implementing system level design to mitigate SEU occurrence using processor CPU error detection function of the on-board flight software.

  • PDF

Spatial and Directional Sensation Prosthesis for the Blind (시각장애인을 위한 공간 및 방향감각 보조시스템)

  • 노세현;박우찬;신현철;김상호;김영곤;김광년;정동근
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • In this study for the prosthesis of the spatial and directional sensation for the blind, an ultrasonic scale system and an electronic compass system were developed. The ultrasonic scale utilizes 40 ㎑ sound for the detection of distance to the barrier and the spatial information is transferred to the blind by various sound interval, which is proportional to the distance. The electronic compass utilizes a magnetoresistor bridge for the detection of the magnetic field strength of earth in horizontal plane. The information for the direction of the earth's north is transferred by tactile stimuli by a vibrating motor band around upper head. Detection distance of the ultrasonic scale is ranged from 0.065 to 3.26 meters, and the detection angle resolution of the electronic compass is about 22.5 degrees. The integrated system of the ultrasonic scale and the electronic compass was developed. Distance information is converted to the location of the tactile stimulation along the clockwise direction by a vibrating motor according to the distance installed around upper head of the blind. The intent of this article is to provide an practical prosthetic tool of spatial and directional sensation for the blind. Daily practice of this system will improve the usefulness of this system.

Development of Flight Software for SIGMA CubeSat (SIGMA 큐브위성의 비행 소프트웨어 개발)

  • Lee, Jeongho;Lee, Seongwhan;Lee, JungKyu;Lee, Hyojeong;Shin, Jehyuck;Jeong, Seonyeong;Oh, YoungSeok;Jin, Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.363-372
    • /
    • 2016
  • SIGMA(Scientific cubesat with Instruments for Global Magnetic field and rAdiation) CubeSat has been developed for magnetic field measurement of the Earth and space radiation measurement at Kyung Hee university. The flight software plays important roles in controlling the satellite and processing the data in the space mission. In this paper, the Flight Software has been implemented to process all the tasks in the one thread without RTOS(Real Time Operating System). This is an effective mothed not only to concentrate the space mission of CubeSat but also to reduce the overhead of the Flight Software by considering the mission perform procedures and the system control methods.

A Study on Observation of Lunar Permanently Shadowed Regions Using GAN (GAN을 이용한 달의 영구 그림자 영역 관찰에 관한 연구)

  • Park, Sung-Wook;Kim, Jun-Yeong;Park, Jun;Lee, Han-Sung;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.520-523
    • /
    • 2022
  • 일본 우주항공연구개발기구(Japan Aerospace Exploration Agency, JAXA)는 2007년부터 2017년까지 달 탐사선 셀레네(Selenological and Engineering Explorer, SelEnE)가 관측한 데이터를 수집하고, 연구했다. JAXA는 지구 상층 대기에 존재하는 산소가 자기장의 꼬리 부분에 실려 달로 이동한다는 사실을 발견했다. 하지만 이 연구는 아직 진행 중이며 달의 산화 과정 규명에 추가 연구가 필요하다. 본 논문에서는 생성적 적대 신경망(Generative Adversarial Networks, GAN)으로 달 분화구의 영구 그림자 영역을 제거하고, 물과 얼음을 발견하여 선행 연구의 완성도를 향상하고자 한다. 실험에 사용할 모델은 CIPS(Conditionally Independent Pixel Synthesis)다. CIPS는 실제 같은 영상을 고해상도로 합성한다. 합성할 데이터의 최적인 가중치 초기화 및 파라미터 갱신 방법, 활성 함수 조합은 실험을 통해 확인한다. 필요에 따라 앙상블 학습을 할 수도 있다. 성능평가는 FID(Frechet Inception Distance), 정밀도, 재현율을 사용한다. 제안한 방법은 진행 중인 연구의 시간과 비용을 절약하고, 인과관계를 더욱 명확히 밝히는 데 도움 될 수 있다고 사료된다.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

CO Observations Toward IRAS 07280-1829 and Its Related Clouds (적외선원 IRAS 07280-1829와 이와 관련된 분자운의 CO분자선 관측연구)

  • Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.402-410
    • /
    • 2011
  • We present results of CO observations toward an infrared (IR) source, IRAS 07280-1829, and its possibly related molecular clouds. The physical parameters of this IR source such as its infrared slope (${\alpha}$=16) of the Spectral Energy Distribution and bolometric temperature (145 K) indicate that it is an embedded protostar. Its luminosity is ${\sim}2.9{\times}10^4L_{\odot}$, typical of a massive star. The CO profile toward IRAS 07280-1829 has broad wing components, implying a possible existence of CO outflow. The excitation temperature and mass of a molecular cloud (Cloud A) which is thought to harbor the IR source are estimated to be 9~22 K and ~180 $M_{\odot}$, respectively, indicating the Cloud A is a typical infrared-dark cloud. Its LTE mass is found to be much smaller than its virial mass by more than a factor of 10 which is inconsistent with the fact that a protostar recently formed exists in the Cloud A. This may suggest that the environment of the cloud where the IR source is forming is dominant of turbulence and/or magnetic filed, making its virial mass estimated unusually high.

Design and Development of the SNIPE Bus System (초소형위성 SNIPE 본체 설계 및 개발)

  • Kim, Hae-Dong;Choi, Won-Sub;Kim, Min-Ki;Kim, Jin-Hyung;Kim, KiDuck;Kim, Ji-Seok;Cho, Dong-Hyun;Lee, Jaejin
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.81-103
    • /
    • 2022
  • In this paper, the contents of the design and development process of the 6U micro-satellite Snipe (SNIPE, national name Toyosat; small scale magnetospheric and Ionospheric plasma experiment ), which was developed to observe the near-global space environment through polarization flight for the first time in Korea, were described. Snipe performs transversal flight to observe the Earth's surrounding space environment in three dimensions, and aims to simultaneously observe the space plasma density and temperature in the ionosphere, as well as temporal changes in the solar magnetic field and electromagnetic waves. In this way, it was developed by dividing it into a test certification model (EQM) and a flight model (FM) to perform the actual mission for at least six months, away from developing a cube satellite for short-term space technology verification or manpower training. Currently, Snipe, which has completed the development of a total of four FM and completed all space environment tests, is scheduled to launch 2023. In this paper, we introduce the design contents and development process of the Snipe satellite body ahead of launch, and hope that it will be a useful reference for the development of 6U-class micro-satellite for full-scale mission in Korea.

An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea (고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Lee, Won-Hak
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • A statistical downscaling method was adopted in order to establish the high-resolution wave prediction system in the East Sea coastal area. This system used forecast data from the Global Wave Watch (GWW) model, and the East Sea and Busan Coastal Wave Watch (CWW) model operated by the Korea Meteorological Administration (KMA). We used the CWW forecast data until three days and the GWW forecast data from three to seven days to implement the statistical downscaling method (inverse distance weight interpolation and conditional merge). The two-dimensional and station wave heights as well as sea surface wind speed from the high-resolution coastal prediction system were verified with statistical analysis, using an initial analysis field and oceanic observation with buoys carried out by the KMA and the Korea Hydrographic and Oceanographic Agency (KHOA). Similar to the predictive performance of the GWW and the CWW data, the system has a high predictive performance at the initial stages that decreased gradually with forecast time. As a result, during the entire prediction period, the correlation coefficient and root mean square error of the predicted wave heights improved from 0.46 and 0.34 m to 0.6 and 0.28 m before and after applying the statistical downscaling method.

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.