• Title/Summary/Keyword: 지구물리탐사기법

Search Result 308, Processing Time 0.024 seconds

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

3D Effect of Embankment Dam Geometry to Resistivity Data (3차원 댐구조가 전기비저항 자료에 미치는 영향)

  • Cho, In-Ky;Lee, Keun-Soo;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of the embankment distorts significantly resistivity data measured on anywhere of the dam. This study evaluates the influence from 3D effects created by specific dam geometry and effects of water level fluctuations through the 3D finite element modeling technique. Also, a comparison between different locations of survey line are carried out, and topographic correction technique is developed for the resistivity data obtained along the embankment dam. Furthermore, using synthetic resistivity data for an embankment dam model with leakage zone, detectability of leakage zones is estimated through 2.5D inversion.

Application of linear array microtremor survey for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파탐사 적용)

  • Cha Young Ho;Kang Jong Suk;Jo Churl Hyun;Lee Kun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.157-164
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the refraction microtremor (REMI) technique as an alternative way to get the geotechnical information, in particular shear-wave (S-wave) velocity information, at a site along an existing rail road. The REMI method uses ambient noises recorded using standard refraction equipment to derived shear-wave velocity information at a site. It does a wavefield transformation on the recorded wavefield to produce Rayleigh wave dispersion curve, which are then picked and modeled to get the shear-wave velocity structure. At this site the vibrations from the running trains provided strong noise sources that allowed REMI to be very effective. REMI was performed along the planned new underground rail tunnel. In addition, Suspension PS logging (SPS) were carried out at selected boreholes along the profile in order to draw out the quantitative relation between the shear wave velocity from the PS logging and the rock mass rating (RMR) determined from the inspection of the cores recovered from the same boreholes, These correlations were then used to relate the shear-wave velocity derived from REMI to RMR along the entire profile. The correlation between shear wave velocity and RMR was very good and so it was possible to estimate the RMR of the total zone of interest for the design of underground tunnel,

  • PDF

Evaluation of Vs profile of Rock-fill Zone using Seismic Surface wave Method (표면파 탐사 기법을 이용한 락필댐 사력재의 전단파 속도 획득)

  • Kim, Jong-Tae;Park, Heon-Joon;Kim, Gyeong-Seob;Kim, Dong-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.101-106
    • /
    • 2008
  • It is very important to measure reliable properties of each zones in dam for seismic design. But, rock-fill zone which have 80% of total volume and support maintenance mainly during earthquake has little property by field test and seismic design was performed using assumed value. So, it is required that reliable properties have to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive such as SASW and HWAW, was applied to dam to evaluate rock-fill zone of dam. In 2 dams, Vs profiles were evaluated reliably and possibility of suggestion of D/B was verified.

  • PDF

Introduction to Geophysical Exploration Data Denoising using Deep Learning (심층 학습을 이용한 물리탐사 자료 잡음 제거 기술 소개)

  • Caesary, Desy;Cho, AHyun;Yu, Huieun;Joung, Inseok;Song, Seo Young;Cho, Sung Oh;Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.117-130
    • /
    • 2020
  • Noises can distort acquired geophysical data, leading to their misinterpretation. Potential noises sources include anthropogenic activity, natural phenomena, and instrument noises. Conventional denoising methods such as wavelet transform and filtering techniques, are based on subjective human investigation, which is computationally inefficient and time-consuming. Recently, many researchers attempted to implement neural networks to efficiently remove noise from geophysical data. This study aims to review and analyze different types of neural networks, such as artificial neural networks, convolutional neural networks, autoencoders, residual networks, and wavelet neural networks, which are implemented to remove different types of noises including seismic, transient electromagnetic, ground-penetrating radar, and magnetotelluric surveys. The review analyzes and summarizes the key challenges in the removal of noise from geophysical data using neural network, while proposes and explains solutions to the challenges. The analysis support that the advancement in neural networks can be powerful denoising tools for geophysical data.

Rapid 2.5D Small-Loop EM Modeling by Extended Born Approximation (확장 Born 근사에 의한 소형루프 전자탐사법의 신속한 2.5차원 모델링)

  • Cho, In-Ky;Song, Sung-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.308-313
    • /
    • 2007
  • The small-loop electromagnetic technique has been used successfully for many geophysical qualitative investigations, particularly for shallow engineering and environmental surveys. Recently, various geophysical imaging methods based on numerical modeling and inversion have been tried in order to get more quantitative subsurface structure. However, conventional 2.5D small loop EM modeling takes a lot of time because responses should be calculated for several wave numbers and transformed into space domain. In this study, we developed a 2.5D HCP small loop EM modeling algorithm using extended Born approximation, which does not require transformation. Also, we checked its validity by comparison with other numerical results.

The Treatment of the Free-surface Boundary Conditions by Finite-Difference Midpoint-Averaging Scheme for Elastic Wave Equation Modeling (탄성파 파동 방정식 모델링에서 중간점 차분 기법을 이용한 지표 경계 조건의 처리)

  • Park, Kwon-Gyu;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.61-69
    • /
    • 2000
  • The free-surface boundary conditions are persistent problem in elastic wave equation modeling by finite-difference method, which can be summarized with the degradation of the accuracy of the solution and limited stability range in Poisson's ratio. In this paper, we propose the mid-point averaging scheme as an alternative way of implementing the free-surface boundary conditions, and present the solution to Lamb's problem to verify our approach.

  • PDF

Subsurface Imaging using Headwave Stacking (선두파 중합을 이용한 천부지층의 영상화)

  • Park Jung-Jae;Ko Seung-Won;Shin Chang-Soo;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • For economy and convenience, seismic refraction survey is widely used in surveying for large civil engineering work. The purpose of this study is to obtain the numerical responses of various models using Kirchhoff migration, and to analyze its application to the real data processing. Synthetic traveltime curve was calculated by vidale's algorithm, and various models such as 2 or 3 layer model and irregular topography model are tested to simulate the response of real structure. In order to compare the effect of initial velocity model, true velocity models, inversion results by tomography, smooth velocity models are used as an initial guess. The responses of model data show that the algorithm of this study is more sensitive to initial velocity model than the reflection survey, so choosing a suitable initial velocity model will be the most important thing in real data processing.

Industry-University-Research Collaborative Geoscientific Study in Pocheon area for Groundwater Survey, Part I: Borehole Technology (포천지역 지하수기초조사 산학연 공동탐사 사례연구(I): 공내탐사기술)

  • Yu, Young-Chul;Lee, Sang-Tae;You, Young-Jun;Hwang, Se-Ho;Sin, Je-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.117-122
    • /
    • 2005
  • The purpose of this study is to analyze a correlation between lithology, rock physical property and fracture zone by multiple-logging method, which includes optic borehole image, suspension type PS, resistivity, SP, natural gamma, density, caliper logging located in Ogar test area, Changsu, Pocheon-gun, Gyunggi Province. The outstanding geophysical logging responses particularly shown from lithology pattern, fracture zone, dike zone. in result, the depth of fracture zone which enable groundwater flow estimated at $67{\sim}69m$.

  • PDF

Prestack Datuming by Wavefield Depth Extrapolation using the DSR Equation (DSR 연산자에 의한 파동장 외삽을 이용한 중합전 데이터밍)

  • Ji Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.54-62
    • /
    • 1999
  • This paper describes a datuming scheme for a prestack dataset which uses wavefield depth extrapolation. The formulation of the prestack datuming algorithm is performed by finding the adjoint operator to the corresponding forward prestack wavefield extrapolation from a flat surface to an irregular surface. Here I used double-square-root (DSR) equation to extrapolate wavefield in prestack sense. This correspond to the forward model of the well known `survey sinking` prestack imaging algorithm.

  • PDF