• Title/Summary/Keyword: 증발냉각시스템

Search Result 72, Processing Time 0.024 seconds

Characteristics of Temperature Control by Hot-gas Bypass Flow Rate on Industrial Water Cooler (핫가스 바이패스 유량에 따른 산업용 냉각기의 온도제어 특성)

  • Baek, Seung-Moon;Choi, Jun-Hyuk;Byun, Jong-Yeong;Moon, Choon-Geun;Lee, Ho-Saeng;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1129-1136
    • /
    • 2009
  • The paper presents the performance characteristics for a cooling system using EEV. The water cooler was used to reduce thermal deformation and contraction due to high speed of machine tools and the EEV was used for capacity control for water cooler. The apparatus was designed for hot-gas bypass system which a hot-gas can flows from outlet of compressor to the inlet of evaporator. This experiment is the intermediary study for precise temperature control through PID control. The results show that the evaporator pressure increased and refrigeration capacity decreased as the EEV opening step of hot-gas bypass increased. These results can be used as basic data for the design of effective water cooler.

Design of Heat Pump System in Air Heat Source Type (공기열원 히트 펌프 시스템 설계)

  • Lee, Yun-Min;Shin, Jin-Seob
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.73-77
    • /
    • 2019
  • In this paper, the heat pump system was designed using heat absorption of the refrigerant or condensation heat. The cooperation system has been developed to pass a heat source of low temperature to a high temperature or to pass the heat source of high temperature to a low temperature. Heat pump for using the valve as a function of switching a condenser and an evaporator in a refrigerating cycle. As a result, heat pump system was developed by air source method. Therefore cooperating system for energy saving to solve at the same time as the cooling and heating by system of one was equipped.

Conceptual Design of the Minimum Integration IGCC (최소 공정연계를 가지는 석탄가스화 복합발전 시스템의 개념 설계)

  • Park, Moung-Ho;Kim, Jong-jin;Kim, Yong-Hee;Kim, Chul
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • 공정연계를 최소호하는 IGCC 시스템에 대한 개념설계를 수행하였다. 공정분석은 상용코드인 ASPEN PLUS를 이용하였다. 가스화기의 적절한 운전조건을 찾기위하여 가스화기를 경계조건으로 하는 액서지 민감도분석을 통하여 투입되는 슬러리와 산소의 조건을 결정하였다. 또한 , 생성가스 냉각시 현열을 최대한 회수학 ldn하여 , 열교환망을 통하여 급수를 에열하고 가스화플랜트의 각 부분에 공급하도록 공정을 구성하였다. 여분의 가열된 급수는 갑압증발시켜 복합사이클에서 동력을 생성시키는데 사용되어진다. 이와 같은 시스템은 , 가스터빈 -ASU-가스화플랜트의 공기에 의한 공정연계와, HRSG-가스냉각 및 정제시스템 간의 증기연계를 가능한 적게함으로써 공정의 운전성과 경제성을 최적으로 유지할 수 있다. 본 연구에서 제시하는 공정의 경우에, 열효율이 약 39%(고위발열량 기준)으로 나타났으며, 단위 기기 및 단위공정들의 최적화를 통하여 40%의 효율달성이 가능할 것이다.

  • PDF

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

Change of the Warm Water Temperature for the Development of Smart Healthecare Bathing System (지능형 헬스케어 욕조시스템 개발을 위한 온수 온도변화)

  • Kim, Gi-Beom
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.270-276
    • /
    • 2006
  • In this study, heat loss through free surface of water contained in bathtub due to conduction and evaporation has been analyzed. As a result of this study, a relational equation has been derived based on the basic theory of heat transfer to evaluate the performance of bath tubes. The derived equation was rational and quantitative. The major heat loss was found to be due to evaporation. Moreover, it has been found out that the speed of heat loss depends more on the humidity of the bathroom than the temperature of water contained in the bathtub. So, it is best to maintain the temperature of bathtub water to be between 41 to $45^{\circ}C$ and the humidity of bathroom to be 95%.

Study on the Spraying Characteristics of Fog Nozzles to be used for Greenhouse Cooling (온실냉방용 분사노즐의 분무특성에 대한 고찰)

  • 윤용철;서원명
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.32-35
    • /
    • 1998
  • 최근 온실이 현대화, 대형화, 고정화 및 자동화와 함께 주년생산을 위한 년중 재배체계가 도입되면서, 여름철 작물의 생육환경 조성을 개선하기 위하여 기존의 방법보다 더욱 적극적인 냉방시스템을 활용하게 되었다. 지금까지 알려진 여름철 주간 온실냉방방식에는 여러 가지 있으나, 그 중에서 물의 기화열을 이용한 패드 ㆍ 팬방식, 미스트 ㆍ 팬방식, 포그 ㆍ 팬방식의 증발냉각법이 주를 이루고 있다. (중략)

  • PDF

Methods to Raise the Efficiency of External Shading in Greenhouse (온실에서 외부차광의 효율성 증대 방안)

  • 이현우;이석건;김길동;이종원
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2000.10b
    • /
    • pp.124-127
    • /
    • 2000
  • 시설원예의 궁극적인 목적은 인위적인 환경조절을 통해 주년생산과 단위면적당 생산성을 증대시키면서 품질향상을 극대화시키는 것이라 할 수 있다. 특히, 시설원예의 주년생산과 관련하여 냉ㆍ난방에너지의 절약에 관한 많은 연구가 수행되어 왔으며, 현재 많은 냉ㆍ난방장치들이 실용화되어지고 있다. 그 중에서, 여름철의 적극적인 냉방방법으로 증발냉각방식, 히터펌프, 에어컨 등이 농가에 보급되어 널리 이용되고 있으나 항상 경제성에 있어서 문제점으로 제기되고 있으며 이런 경제적인 부담을 줄이고자 냉방장치의 보조적 수단으로서 차광시스템이 널리 이용되고 있는 실정이다. (중략)

  • PDF

Greenhouse Cooling Using Air Duct and Integrated Fan and Pad System (일체형 팬 앤 패드 시스템과 에어 덕트를 이용한 온실 냉방)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • The fan and pad evaporative cooling system is one of the main cooling methods in greenhouses. Its efficiency is very high, but it has some disadvantages as temperature gradient in greenhouse is large. This study was conducted to reduce the internal temperature gradients in the fan and pad cooling greenhouses. Experiments on cooling performance were carried out in a greenhouse equipped with air duct and integrated fan and pad system as an idea of this study. It showed that the cooling efficiency of an integrated fan and pad system was 75.7% in the first stage and 88.6% in the second stage. When this cooling system was operated for an unshaded and a shaded greenhouse, there were cooling effects of $5.7\sim7.6^{\circ}C$ and $7.4\sim9.7^{\circ}C$ to the control greenhouse, respectively. Maximum temperature differences in a cooling greenhouse, with a length of 18m, were $1.6\sim1.7^{\circ}C$ for shaded conditions and $2.3\sim2.7^{\circ}C$ for unshaded conditions. This greenhouse cooling method, with air duct and integrated fan and pad system, can reduce about 40~50% of the internal temperature gradients in the usual fan and pad cooling greenhouses.

A Study on the Rapid Cooling Vacuum System for the Storage and Transportation of the Cold Agriculture and Livestock Products (농축산물의 저장 및 유통을 위한 감압증발 급냉각 시스템에 관한 연구)

  • 김성규;김원녕;김경석;최순열;전현필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.26-36
    • /
    • 1997
  • Recently, the new refrigerating system, using non - fluorinated hydrocarbon refrigerants has to be developed for the agricultural fields. One of that kinds of systems is the cooling system using the water vapor and vacuum, in which the water evaporate at the low temperature under vacuum and absorb the large amount of the latent heat. If vapor with large amount of latent heat is removed from the system, the system is cooled accordingly. The characteristics of cooling under the vacuum was observed and measured using experimental apparatus, which is consisted of vacuum chamber, the ejectors, the pumps and the measurement apparatus. As the results of experiments, we know that the evaporation in the vacuum occurs vigorously when the materials to be cooled has more amounts of heat before cooling, and by which effects the materials can be cooled. The cooling vacuum system is more efficient than other methods when the agricultural products is chilled or dried.

  • PDF

Analysis of Thermal Performance in Roof Evaporative Cooling System (지붕 증발냉각시스템의 열성능 해석)

  • Shin, U.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • This paper reports on an theoretical study of heat transfer from evaporative cooling system by the flow of recirculated water over the roof. In this system tile water is distributed at the top of the pitched roof, collected at the bottom by a gutter and recirculated by a pump. To analysis the system, the energy balance equations are developed and solved using a finite difference method. The calculation results show a good agreement with the measured ones obtained from our experiment. Based on the results, it was seen that the roof-evaporative cooling system reduced the heat flux significantly compared with the conventional roof structure even in the hot-humid summer climate of Korea.

  • PDF