• Title/Summary/Keyword: 증기 건도

Search Result 34, Processing Time 0.021 seconds

Forced convective Heat Transfer in rectangular channel (사각 채널에서의 강제대류 열전달)

  • Lim, T.W.;You, S.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.37-43
    • /
    • 2012
  • This paper performed experimental research in order to measure boiling heat transfer coefficient of water in microchannel with hydraulic diameter of $500{\mu}m$. Tests were conducted within the ranges of heat fluxes from 100 to 400 kW/$m^2$, vapor qualities from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/$m^2s$. From the experimental results, it was found that flow boiling heat transfer coefficient is not dependent on mass flux or vapor quality, but instead on heat flux to a certain degree. The measured data of heat transfer are compared to a few available correlations proposed for mini-channels. Among them, Sun and Mishima's correlation is found to predict the present data well, within the mean absolute error of 17.84%.

Performance comparison of refrigeration cycle using R134a with the vapor-liquid ejector (증기-액 이젝터를 적용한 R134a 냉동사이클의 성능 비교)

  • Yoon, Jung-In;Kim, Chung-Lae;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.890-894
    • /
    • 2015
  • Recently, research on high-efficiency refrigeration cycles that apply an ejector to basic cycles has progressed actively. The role of the ejector and the performance of refrigeration cycles are subordinate to ejector locations. In this study, the performance of three refrigeration cycles with different ejector locations is compared and analyzed. The results showed an increased COP in all cycles due to the application of the ejector, with the highest increase of 44% compared to a basic refrigeration cycle. The ejector refrigeration cycle proposed in this study presents the highest COP, 3.47. Moreover, the decrease in condensation capacity in Bergander's cycle, Xing's cycle, and our proposed ejector refrigeration cycle went up to 21%. In refrigeration cycles applying the ejector, the pressure ratio of the ejector, the vapor fraction of discharge, and compression ratio are important factors for COP enhancement. For this reason, detailed and accurate control of these is significant.

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

A Feasibility Study on Geothermal Power Plant in Korea (한국형 지열발전 타당성 연구)

  • Lim, Hyo-Jae;Kwon, Jung-Tae;Kim, Geum-Soo;Chang, Ki-Chang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.39-44
    • /
    • 2009
  • Geothermal energy is the heat contained in the earth and its internal fluids. Geothermal energy is stored as sensible or latent heat. Supplied by both internal and external sources, it represents a vast supply which is only started to be tapped for generation of electric power. In general, this is natural dry or wet medium to high enthalpy steam at temperatures above $150^{\circ}C$. For some time, binary systems employing substances with a lower boiling point than water in a secondary circuit have been used to generate vapor for driving turbines at a lower temperature level. The utilization of binary plants and the possibility of production from enhanced geothermal systems can expand its availability on a worldwide basis. The geothermal electricity installed capacity is approaching the 10,000GW threshold. Geothermal energy is not present everywhere, but its baseload capability is a very important factor for its success.

  • PDF

Metal Vapor Laser Research II. (금속증기레이저 연구 II)

  • 이재경;정환재;임기건;이형종;정창섭;김진승
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.178-182
    • /
    • 1992
  • An air-cooled discharge-heated copper-vapor laser system with its inter-electrode distance of 45 cm has been developed by utilizing an alumina ceramic plasma tube of 1.6 cm in diameter and 50 cm in lengih. For operating the laser, a dc high voltage power supply with output rating of 6 kV and 500 mA, a resonant charging circuitry consisting partly of an 1.8 H inductor assembly and a 5 nF storage capacitor, and a thyratron driver operating up to 7 kHz have also been developed. The present laser system starts lasing at the tube temperature of about $1350^{\circ}C$ and an maximum average output power of 0.7 W has been obtained at 12 kV, 4.5 kHz. 50 mbar of Ne buffer gas pressure, and at the tube temperature of $1460^{\circ}C$.

  • PDF

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam (과열증기 열처리 잣나무재의 물성 평가)

  • Park, Yong-Gun;Eom, Chang-Deuk;Park, Jun-Ho;Chang, Yoon-Seong;Kim, Kwang-Mo;Kang, Chun-Won;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.257-267
    • /
    • 2012
  • In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.

Performance Analysis of CHP(Combined Heat and Power) for Various Ambient Conditions (외기조건변화에 따른 CHP 성능 해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Nam-Jin;Lim, Kyung-Bum;Seo, Young-Ho;Kim, Ki-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3353-3359
    • /
    • 2011
  • The co-generation system consisted of gas a turbine, a steam turbine, heat recovery steam generator and a heat exchangers for district heating was investigated in the present study. A back-pressure steam turbine (non-condensing type) was used. A partial load analysis according to the outdoor temperature in winter was conducted and optimal thermal load and power conditions was examined using the commercial computing software Thermoflex. As a result, under a constant thermal load, the power outputs of gas turbine and overall system increased as an outdoor temperature decreased. On the other hand, the reduction in exhaust gas temperature led to the decrease in output of steam turbine. Considering the portion of gas turbine in overall system in terms of the power output, it can be known that the tendency in power output of overall system was similar to that of the gas turbine.

Antimicrobial Effects of Scutellariae Radix Extract against Listeria monocytogenes (Listeria monocytogenes에 대한 황금추출물의 항균효과)

  • 조성환;김영록
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.959-963
    • /
    • 2001
  • To investigate the antimicrobial effects of Scutellariae Radix extract against L.monocytogenes from foods, L. monocytogenes strains isolated from livestock, processed food from meat and milk, and frozen foods, were examined for their sensitivity to Scutellariae Radix extract. 30 L. monocytogenes strains were isolated from total 178 samples(16.9%); 13(14.0%) strains from beef 6(20.7%) strains from pork, 9(39.2%) strains from chicken and 2 (16.7%) strains from frozen foods but was not found from processed products, The serotypes of isolated L.monocytogenes were serotype O-1 strains (23, 76.7%) and serotype O-4 strains(7, 23.3%) on antisera agglutination test. The growth curves of isolates were shown lag phase, logarithmic phase, stationary phase and death phase as typical sigmoid curve on the preservative-free hams. After 6 hours. Scutellariae Radix extract contain group differ from control group on preservative-free ham samples, and the isolates were inhibited in more than 1000 ppm Scutellariae Radix extract on the inhibitory growth curve of L.monocytogenes. The mor-phological changes were observed by transmission electron microscope and the microbial cells membrane was destroyed by Scutellariae Radix extract.

  • PDF

Performance Analysis of GT/ST Hybrid System for Marine Power Applications(under Conditions of Air-Cooled Gas Turbine) (가스터빈의 냉각공기를 고려한 선박동력용 GT/ST 하이브리드시스템의 성능 평가)

  • Kim, Sun-Hee;Jung, Byung-Gun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.586-594
    • /
    • 2012
  • A future type ship power system requires both economic and eco-friendliness. That is, this should be reduced the discharge quantity of air pollutants and green-house gases as well as have high energy efficiency. Recently, gas turbines have been realized a lot of technical development in terms of efficiency and safety, and are widening the example of their adoption to a GT/ST hybrid system in a power plant as well as an aviation use. This paper reviewed the performance characteristics of a GT/ST hybrid system of several ten MW class, not large capacity, with a simulation in order to evaluate the possibility of a GT/ST hybrid system for ships. The reviewed GT/ST hybrid system has maximum 49 % efficiency, has the highest efficiency point for TIT, and has a 70~75 % and 25~30 % load ratio for a gas turbine and a steam turbine respectively.