DOI QR코드

DOI QR Code

Performance Analysis of GT/ST Hybrid System for Marine Power Applications(under Conditions of Air-Cooled Gas Turbine)

가스터빈의 냉각공기를 고려한 선박동력용 GT/ST 하이브리드시스템의 성능 평가

  • 김선희 (한국해양대학교대학원) ;
  • 정병건 (한국해양대학교기관공학부) ;
  • 김명환 (한국해양대학교기관공학부)
  • Received : 2012.04.25
  • Accepted : 2012.07.03
  • Published : 2012.07.31

Abstract

A future type ship power system requires both economic and eco-friendliness. That is, this should be reduced the discharge quantity of air pollutants and green-house gases as well as have high energy efficiency. Recently, gas turbines have been realized a lot of technical development in terms of efficiency and safety, and are widening the example of their adoption to a GT/ST hybrid system in a power plant as well as an aviation use. This paper reviewed the performance characteristics of a GT/ST hybrid system of several ten MW class, not large capacity, with a simulation in order to evaluate the possibility of a GT/ST hybrid system for ships. The reviewed GT/ST hybrid system has maximum 49 % efficiency, has the highest efficiency point for TIT, and has a 70~75 % and 25~30 % load ratio for a gas turbine and a steam turbine respectively.

미래형 선박 동력장치는 경제성과 친환경성을 같이 요구하고 있다. 즉, 높은 에너지 효율과 함께 대기오염물질 및 온실가스의 배출을 낮추어야 한다. 최근 가스터빈은 효율과 안전성 면에서 많은 기술적 발전을 이룩하였으며 항공용 이외에 파워플랜트의 GT/ST 하이브리드시스템으로 채용의 사례를 넓히고 있다. 본 논문에서는 선박용으로 GT/ST 하이브리드시스템의 가능성을 평가하기 위하여 대용량이 아닌 수십 MW급에 대한 성능 특성을 시뮬레이션으로 검토하였다. 검토된 GT/ST 하이브리드시스템은 최대 효율이 49 %정도이고 TIT에 대하여 최고 효율점을 갖으며 가스터빈과 증기터빈의 부하분담률이 각각 70~75 % 그리고 25~30 % 정도였다.

Keywords

References

  1. Ki-Chol Noh, Dong-Il Seol, Kyoung-Me Hu and Se-Hun Kim, "Development and performance evaluation for 1.6MW gas engine", Journal of the Korean Society of Marine Engineering, vol. 36, no. 2, pp. 230-237, 2012 (in Korean). https://doi.org/10.5916/jkosme.2012.36.2.230
  2. Sang-Kyun Park and Mann-Eung Kim, "A study on thermal management of stack supply gas of solid oxide fuel cell system for ship applications" Journal of the Korean Society of Marine Engineering, vol. 35, no. 6, pp. 765-772, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.6.765
  3. R.C. Wilcock, J.B. Young, and J.H. Horlock, "The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles", Journal of Engineering for Gas Turbines and Power, vol. 127, pp. 109-120, 2005 https://doi.org/10.1115/1.1805549
  4. J.B. Young and R.C. Wilcock, "Modeling the air-cooled gas turbine: Part1-general thermodynamics", Journal of Turbomachinery, vol. 124, pp. 207-213, 2002. https://doi.org/10.1115/1.1415037
  5. J.B. Young and R.C. Wilcock, "Modeling the air-cooled gas turbine: Part2-collant flows and losses", Journal of Turbomachinery, vol. 124, pp. 214-221, 2002. https://doi.org/10.1115/1.1415038
  6. H. Caniere, A. Willockx, E. Dick, and M. De Paepe, "Raising cycle efficiency by intercooling in air-cooled gas turbines", Applied Thermal Engineering, vol. 26, pp. 1780-1787, 2006. https://doi.org/10.1016/j.applthermaleng.2006.02.008
  7. Sanjay, Onkar Singh, and B.N. Prasad, "Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle", Applied Thermal Engineering, vol. 28, pp. 2315-2326, 2008. https://doi.org/10.1016/j.applthermaleng.2008.01.022
  8. Sanjay, Onkar Singh, and B.N. Prasad, "Comparative performance analysis of cogeneration gas turbine cycle for different blade cooling means", International Journal of Thermal Sciences, vol. 48, pp. 1432-1440, 2009. https://doi.org/10.1016/j.ijthermalsci.2008.11.016
  9. J.H. Horlock, D.T. Watson, and T.V. Jones, "Limitations on gas turbine performance imposed by large turbine cooling flows", Journal of Engineering for Gas Turbines and Power, vol. 123, pp. 487-494, 2001. https://doi.org/10.1115/1.1373398