• Title/Summary/Keyword: 중도 탈락 예측

Search Result 36, Processing Time 0.03 seconds

Post-Examination Analysis on the Student Dropout Prediction Index (학생 중도탈락 예측지수에 관한 사후검증 연구)

  • Lee, Ji-Eun
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 2019
  • Drop-out issue is one of the challenges of cyber university. There are about 130,000 students enrolled in cyber universities, but the dropout rate is also very high. To lower the dropout rate, cyber universities invest heavily in learning analytics. Some cyber universities analyze the possibility of dropout and actively support students who are more likely to drop out. The purpose of this paper is to identify the learning data affecting the dropout prediction index. As a result of the analysis, it is confirmed that number of lessons(progress), credits, achievement and leave of absence have a significant effect on dropout rate. It is necessary to increase the accuracy of the prediction model through post-test on the student dropout prediction index.

  • PDF

Dropout Prediction Modeling and Investigating the Feasibility of Early Detection in e-Learning Courses (일반대학에서 교양 e-러닝 강좌의 중도탈락 예측모형 개발과 조기 판별 가능성 탐색)

  • You, Ji Won
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Since students' behaviors during e-learning are automatically stored in LMS(Learning Management System), the LMS log data convey the valuable information of students' engagement. The purpose of this study is to develop a prediction model of e-learning course dropout by utilizing LMS log data. Log data of 578 college students who registered e-learning courses in a traditional university were used for the logistic regression analysis. The results showed that attendance and study time were significant to predict dropout, and the model classified between dropouts and completers of e-learning courses with 96% accuracy. Furthermore, the feasibility of early detection of dropouts by utilizing the model were discussed.

  • PDF

Performance Comparison of Machine Learning based Prediction Models for University Students Dropout (머신러닝 기반 대학생 중도 탈락 예측 모델의 성능 비교)

  • Seok-Bong Jeong;Du-Yon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • The increase in the dropout rate of college students nationwide has a serious negative impact on universities and society as well as individual students. In order to proactive identify students at risk of dropout, this study built a decision tree, random forest, logistic regression, and deep learning-based dropout prediction model using academic data that can be easily obtained from each university's academic management system. Their performances were subsequently analyzed and compared. The analysis revealed that while the logistic regression-based prediction model exhibited the highest recall rate, its f-1 value and ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) value were comparatively lower. On the other hand, the random forest-based prediction model demonstrated superior performance across all other metrics except recall value. In addition, in order to assess model performance over distinct prediction periods, we divided these periods into short-term (within one semester), medium-term (within two semesters), and long-term (within three semesters). The results underscored that the long-term prediction yielded the highest predictive efficacy. Through this study, each university is expected to be able to identify students who are expected to be dropped out early, reduce the dropout rate through intensive management, and further contribute to the stabilization of university finances.

A Machine Learning-Based Vocational Training Dropout Prediction Model Considering Structured and Unstructured Data (정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도탈락 예측 모형)

  • Ha, Manseok;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • One of the biggest difficulties in the vocational training field is the dropout problem. A large number of students drop out during the training process, which hampers the waste of the state budget and the improvement of the youth employment rate. Previous studies have mainly analyzed the cause of dropouts. The purpose of this study is to propose a machine learning based model that predicts dropout in advance by using various information of learners. In particular, this study aimed to improve the accuracy of the prediction model by taking into consideration not only structured data but also unstructured data. Analysis of unstructured data was performed using Word2vec and Convolutional Neural Network(CNN), which are the most popular text analysis technologies. We could find that application of the proposed model to the actual data of a domestic vocational training institute improved the prediction accuracy by up to 20%. In addition, the support vector machine-based prediction model using both structured and unstructured data showed high prediction accuracy of the latter half of 90%.

A Exploratory Study on the Determinants Predicting Student Depature of Freshmen: Focusing on the Case of S University (대학 신입생 중도탈락 예측 요인 분석: S대학 사례를 중심으로)

  • Lee, Eun-jung;Lee, Jeong-hun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.317-330
    • /
    • 2021
  • This study aims to derive the main factors for predicting student departure of university freshmen and provide the basis for establishing policies to prevent student departure at the institutional level. For this purpose, a random forest model is developed with the data observed for 2 years at a four-year private university in Seoul. In the prediction model, 6 variables of school adjustment factors and 12 variables of institution satisfaction factors are applied. The top 6 variables presenting the highest MDA turn out to be emotional stability, financial conditions, assurance in the choice of major, satisfaction with the choice of university, educational method(systematic teaching method), educational method(effectiveness of major education). Based on the results of this study, it is suggested the necessity of institutional design supporting freshmen to adapt to university life and stably continue their studies.

Implementing of a Machine Learning-based College Dropout Prediction Model (머신러닝 기반 대학생 중도탈락 예측 모델 구현 방안)

  • Yoon-Jung Roh
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.119-126
    • /
    • 2024
  • This study aims to evaluate the feasibility of an early warning system for college dropout by machine learning the main patterns that affect college student dropout and to suggest ways to implement a system that can actively prevent it. For this purpose, a performance comparison experiment was conducted using five types of machine learning-based algorithms using data from the Korean Educational Longitudinal Study, 2005, conducted by the Korea Educational Development Institute. As a result of the experiment, the identification accuracy rate of students with the intention to drop out was up to 94.0% when using Random Forest, and the recall rate of students with the intention of dropping out was up to 77.0% when using Logistic Regression. It was measured. Lastly, based on the highest prediction model, we will provide counseling and management to students who are likely to drop out, and in particular, we will apply factors showing high importance by characteristic to the counseling method model. This study seeks to implement a model using IT technology to solve the career problems faced by college students, as dropout causes great costs to universities and individuals.

Performance Comparison of Neural Network and Gradient Boosting Machine for Dropout Prediction of University Students

  • Hyeon Gyu Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.49-58
    • /
    • 2023
  • Dropouts of students not only cause financial loss to the university, but also have negative impacts on individual students and society together. To resolve this issue, various studies have been conducted to predict student dropout using machine learning. This paper presents a model implemented using DNN (Deep Neural Network) and LGBM (Light Gradient Boosting Machine) to predict dropout of university students and compares their performance. The academic record and grade data collected from 20,050 students at A University, a small and medium-sized 4-year university in Seoul, were used for learning. Among the 140 attributes of the collected data, only the attributes with a correlation coefficient of 0.1 or higher with the attribute indicating dropout were extracted and used for learning. As learning algorithms, DNN (Deep Neural Network) and LightGBM (Light Gradient Boosting Machine) were used. Our experimental results showed that the F1-scores of DNN and LGBM were 0.798 and 0.826, respectively, indicating that LGBM provided 2.5% better prediction performance than DNN.

Development of Prediction Model to Improve Dropout of Cyber University (사이버대학 중도탈락 개선을 위한 예측모형 개발)

  • Park, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.380-390
    • /
    • 2020
  • Cyber-university has a higher rate of dropout freshmen due to various educational factors, such as social background, economic factors, IT knowledge, and IT utilization ability than students in twenty offline-based university. These students require a different dropout prevention method and improvement method than offline-based universities. This study examined the main factors affecting dropout during the first semester of 2017 and 2018 A Cyber University. This included management and counseling factors by the 'Decision Tree Analysis Model'. The Management and counseling factors were presented as a decision-making method and weekly methods. As a result, a 'Dropout Improvement Model' was implemented and applied to cyber-university freshmen in the first semester of 2019. The dropout-rate in freshmen applying the 'Dropout Improvement Model' decreased by 4.2%, and the learning-persistence rate increased by 11.4%. This study applied a questionnaire survey, and the cyber-university students LMS (Learning Management System) learning results were analyzed objectively. On the other hand, the students' learning results were analyzed quantitatively, but qualitative analysis was not reflected. Nevertheless, further study is necessary. The 'Dropout Improvement Model' of this study will be applied to help improve the dropout rate and learning persistence rate of cyber-university.

A Study on the Prediction Model for Student Dropout (학생 중도탈락 예측 모델에 관한 연구)

  • Lee, JongHyuk;Kim, DaeHak;Gil, JoonMin
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.37-40
    • /
    • 2018
  • 빅데이터 산업 부상과 함께 교육 데이터 분석 분야가 새롭게 주목받고 있다. 교육 현장에서 학습 데이터의 양과 종류는 꾸준히 증가하고 있고 이를 분석하기 위한 정보기술도 계속 발전하고 있다. 한편, 학교 교육은 사회적 성취와 밀접한 관련이 있어 사회이동의 중요한 수단이 되는 만큼 학교 교육으로부터 이탈할 위험이 있는 학생들을 조기에 발견하여 이탈을 방지하는 것은 매우 중요하다. 본 논문은 대학생의 중도탈락을 예방하기 위해 로지스틱 회귀분석과 다층 퍼셉트론 기법을 이용해 학습 데이터를 분석하여 예측 모델을 생성하고 해당 모델을 평가한다. 평가 결과, 다층 퍼셉트론 모델이 로지스틱 회귀분석 모델에 비해 정확도와 재현율은 우수하였지만 정밀도는 약간 저조하였다.

Implementation of Mahalanobis-Taguchi System for the Election of Major League Baseball Hitters to the Hall of Fame (메이저리그 타자들의 명예의 전당 입성과 탈락에 대한 Mahalanobis-Taguchi System의 적용과 비교)

  • Kim, Su Whan;Park, Changsoon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.223-236
    • /
    • 2013
  • Various statistical classification methods to predict election to the Major League Baseball hall of fame of are implemented and their accuracies are compared. Seventeen independent variables are selected from the data of candidates eligible for the hall of fame and well-known classification methods such as discriminant analysis and logistic regression as well as the recently proposed Mahalanobis-Taguchi system(MTS). The MTS showed a better performance than the others in classification accuracy because it is especially efficient in cases where multivariate data does not constitute directionally geographical groups according to attributes.