Abstract
Various statistical classification methods to predict election to the Major League Baseball hall of fame of are implemented and their accuracies are compared. Seventeen independent variables are selected from the data of candidates eligible for the hall of fame and well-known classification methods such as discriminant analysis and logistic regression as well as the recently proposed Mahalanobis-Taguchi system(MTS). The MTS showed a better performance than the others in classification accuracy because it is especially efficient in cases where multivariate data does not constitute directionally geographical groups according to attributes.
미국 프로야구(Major League Baseball) 명예의 전당의 입성과 탈락을 예측할 수 있는 여러 가지 통계적인 분류분석법을 실시하고 그 결과의 정확성을 비교하였다. 이를 위해 명예의 전당 가입 조건을 만족하는 타자들 중 1980년 이후 기록된 데이터의 17개의 독립변수를 사용하여 분류분석에서 널리 사용되는 기준으로 판별분석, 로지스틱 회귀분석과 상대적으로 최근에 제안된 Mahalanobis-Taguchi System(MTS)을 실시하여 비교하였다. 이 세 가지 방법 중 MTS가 상대적으로 더 나은 효율을 보였으며 이는 다변량 관측 값이 방향성이 없어 속성에 따른 도형적 그룹을 형성하지 못하는 경우에 효율적인 MTS의 특성에 의한 것으로 판단된다.