• Title/Summary/Keyword: 중도절단자료

Search Result 61, Processing Time 0.024 seconds

Parameter estimation for exponential distribution under progressive type I interval censoring (지수 분포를 따르는 점진 제1종 구간 중도절단표본에서 모수 추정)

  • Shin, Hye-Jung;Lee, Kwang-Ho;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.927-934
    • /
    • 2010
  • In this paper, we introduce a method of parameter estimation of progressive Type I interval censored sample and progressive type II censored sample. We propose a new parameter estimation method, that is converting the data which obtained by progressive type I interval censored, those data be used to estimate of the parameter in progressive type II censored sample. We used exponential distribution with unknown scale parameter, the maximum likelihood estimator of the parameter calculates from the two methods. A simulation is conducted to compare two kinds of methods, it is found that the proposed method obtains a better estimate than progressive Type I interval censoring method in terms of mean square error.

The influence of the random censorship model on the estimation of the scale parameter of the exponential distribution (중도절단모형이 지수분포의 척도모수추정에 미치는 영향)

  • Kim, Namhyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.393-402
    • /
    • 2014
  • The simplest and the most important distribution in survival analysis is the exponential distribution. In this paper, we investigate the influence of the random censorship model on the estimation of the scale parameter of the exponential distribution. The considered random censorship models are Koziol-Green model and the generalized exponential distribution model. Two models have different meanings. Through the simulation study, the averages of the estimated values of the parameter do not show big differences, however the MSE of the estimator tends to be bigger when the supposed model is significantly different from the true model.

CUSUM charts for monitoring type I right-censored lognormal lifetime data (제1형 우측중도절단된 로그정규 수명 자료를 모니터링하는 누적합 관리도)

  • Choi, Minjae;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.735-744
    • /
    • 2021
  • Maintaining the lifetime of a product is one of the objectives of quality control. In real processes, most samples are constructed with censored data because, in many situations, we cannot measure the lifetime of all samples due to time or cost problems. In this paper, we propose two cumulative sum (CUSUM) control charting procedures to monitor the mean of type I right-censored lognormal lifetime data. One of them is based on the likelihood ratio, and the other is based on the binomial distribution. Through simulations, we evaluate the performance of the two proposed procedures by comparing the average run length (ARL). The overall performance of the likelihood ratio CUSUM chart is better, especially this chart performs better when the censoring rate is low and the shape parameter value is small. Conversely, the binomial CUSUM chart is shown to perform better when the censoring rate is high, the shape parameter value is large, and the change in the mean is small.

Restoration for the censored image vai EM algorithm (EM알고리즘을 이용한 중도절단화상에 대한 복원)

  • 김승구
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.309-323
    • /
    • 1997
  • Although there are many photochemical images of which are censored while they are recorded, normal approaches are often applied to the restorations for them. In this case, it yields a restored image which might have serious bias. However, solutions for this problem are hardly found in the research of image restorations. This article provides a method of image restoration via EM algorithm for the censored images of which are contaminated with Gaussian noise and blur, also presents some results of simulation for artificial images censorized.

  • PDF

Cure Rate Model with Clustered Interval Censored Data (군집화된 구간 중도절단자료에 대한 치유율 모형의 적용)

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.21-30
    • /
    • 2014
  • Ordinary survival analysis cannot be applied when a significant fraction of patients may be cured. A cure rate model is the combination of cure fraction and survival model and can be applied to several types of cancer. In this article, the cure rate model is considered in the interval censored data with a cluster effect. A shared frailty model is introduced to characterize the cluster effect and an EM algorithm is used to estimate parameters. A simulation study is done to evaluate the performance of estimates. The proposed approach is applied to the smoking cessation study in which the event of interest is a smoking relapse. Several covariates (including intensive care) are evaluated to be effective for both the occurrence of relapse and the smoke quitting duration.

Metropolis-Hastings Expectation Maximization Algorithm for Incomplete Data (불완전 자료에 대한 Metropolis-Hastings Expectation Maximization 알고리즘 연구)

  • Cheon, Soo-Young;Lee, Hee-Chan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.183-196
    • /
    • 2012
  • The inference for incomplete data such as missing data, truncated distribution and censored data is a phenomenon that occurs frequently in statistics. To solve this problem, Expectation Maximization(EM), Monte Carlo Expectation Maximization(MCEM) and Stochastic Expectation Maximization(SEM) algorithm have been used for a long time; however, they generally assume known distributions. In this paper, we propose the Metropolis-Hastings Expectation Maximization(MHEM) algorithm for unknown distributions. The performance of our proposed algorithm has been investigated on simulated and real dataset, KOSPI 200.

A two-sample test with interval censored competing risk data using multiple imputation (다중대체방법을 이용한 구간 중도 경쟁 위험 모형에서의 이표본 검정)

  • Kim, Yuwon;Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.233-241
    • /
    • 2017
  • Interval censored data frequently occur in observation studies where the subject is followed periodically. In this paper, our interest is to suggest a test statistic to compare the CIF of two groups with interval censored failure time data in the presence of competing risks. Gray (1988) suggested a test statistic for right censored data that motivated a well-known Fine and Gray's subdistribution hazard model. A multiple imputation technique is adopted to adopt Gray's test statistic to interval censored data. The powers and sizes of the suggested method are investigated through diverse simulation schemes. The main merit of the suggested method is its simplicity to implement with existing software for right censored data. The method is illustrated by analyzing Bangkok's HIV cohort dataset.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Generalized Exponential Regression Model with Randomly Censored Data (임의중도절단자료를 갖는 일반화된 지수회귀모형)

  • 하일도
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.39-43
    • /
    • 1999
  • We consider generalized exponential regression model with randomly censored data and propose a modified Fisher scoring method which estimates the model parameters. For this, the likelihood equations are derived and then the estimating algorithm is developed. We illustrate the proposed method using a real data.

  • PDF

Nonparametric estimation of conditional quantile with censored data (조건부 분위수의 중도절단을 고려한 비모수적 추정)

  • Kim, Eun-Young;Choi, Hyemi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2013
  • We consider the problem of nonparametrically estimating the conditional quantile function from censored data and propose new estimators here. They are based on local logistic regression technique of Lee et al. (2006) and "double-kernel" technique of Yu and Jones (1998) respectively, which are modified versions under random censoring. We compare those with two existing estimators based on a local linear fits using the check function approach. The comparison is done by a simulation study.