References
- Bang, H. and Tsiatis, A. A. (2002). Median regression with censored cost data. Biometrics, 58, 643-649. https://doi.org/10.1111/j.0006-341X.2002.00643.x
- Cai, Z. (2003). Wighted local linear approach to censored nonparametric regression. In Recent Advances and Trends in Nonparametric Statistics, edited by M. G. Akritas and D. M. Politis, Elsevier, 217-231.
- Chernozhukov, V. and Hong, H. (2002). Three-step censored quantile regression and extramarital affairs. Journal of the American Statistical Association, 97, 872-882. https://doi.org/10.1198/016214502388618663
- Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures. Biometrika, 83, 189-206. https://doi.org/10.1093/biomet/83.1.189
- Gannoun, A., Saracco, J. and Yu, K. (2007). Comparison of kernel estimators of conditional distribution and quantile regression under censoring. Statistical Modelling, 7, 329-344. https://doi.org/10.1177/1471082X0700700404
- Ghouch, A. E. and Keilegom, I. V. (2009). Local linear quantile regression with dependent censored data. Statistica Sinica, 19, 1621-1640.
- Huh, J. (2012). Bandwidth selection for discontinuity point estimation in density. Journal of the Korean Data & Information Science Society, 23, 79-87. https://doi.org/10.7465/jkdi.2012.23.1.079
- Kim, C., Oh, M., Yang, S. and Choi, H. (2010). A local linear estimation of conditional hazard function in censored data. Journal of the Korean Statistical Society, 39, 347-355. https://doi.org/10.1016/j.jkss.2010.03.002
- Koenker, R. and Bassett, G. S. (1978). Regression quantiles. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
- Koenker, R. (2005). Quantile regression, Economic Society Monographs 38, Cambridge University Press, Cambridge.
- Lee, Y. K., Lee, E. R. and Park, B. U. (2006). Conditional quantile estimation by local logical regression. Nonparametric Statistics, 18, 357-373. https://doi.org/10.1080/10485250601014248
- Park, H. and Kim, J. S. (2011). An estimation of the treatment effect for the right censored data. Journal of the Korean & Information Science Society, 22, 537-547.
- Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical Association, 98, 1001-1012. https://doi.org/10.1198/016214503000000954
- Susarla, V., Tsai, W. Y. and Van Ryzin, J. (1984). A Buckley-James type estimator for the mean with censored data. Biometrika, 71, 624-625. https://doi.org/10.1093/biomet/71.3.624
- Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. https://doi.org/10.1080/01621459.1998.10474104
- Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research areas. Journal of the Royal Statistical Society B, 52, 331-350.