DOI QR코드

DOI QR Code

Nonparametric estimation of conditional quantile with censored data

조건부 분위수의 중도절단을 고려한 비모수적 추정

  • Kim, Eun-Young (Department of Statistics, Chonbuk National University) ;
  • Choi, Hyemi (Department of Statistics, Chonbuk National University)
  • Received : 2013.01.09
  • Accepted : 2013.02.18
  • Published : 2013.03.31

Abstract

We consider the problem of nonparametrically estimating the conditional quantile function from censored data and propose new estimators here. They are based on local logistic regression technique of Lee et al. (2006) and "double-kernel" technique of Yu and Jones (1998) respectively, which are modified versions under random censoring. We compare those with two existing estimators based on a local linear fits using the check function approach. The comparison is done by a simulation study.

중도절단된 자료가 있을 경우 조건부 분위수함수를 비모수적으로 추정하는 문제에 대하여 다루고 있다. 역함수에 근거한 방법인 Yu와 Jones (1998)에 의해 제안된 중복커널기법 추정량과 Lee 등(2006)의 국소로지스틱기법 추정량을 중도절단된 자료가 있는 경우로 수정하여 새롭게 제안하고, 이들을 기존의 Koenker와 Bassett (1978)의 점검함수에 근거한 커널평활 추정량들과 모의실험을 통해 비교해 보았다. 모의실험을 통하여 역함수에 근거한 추정량들은 조건부 분포가 대칭인 모형에서, 점검함수기법 추정량들은 한쪽으로 치우친 분포인 경우에 조건부 분위수를 대체로 더 잘 추정하고 있음을 알 수 있었다.

Keywords

References

  1. Bang, H. and Tsiatis, A. A. (2002). Median regression with censored cost data. Biometrics, 58, 643-649. https://doi.org/10.1111/j.0006-341X.2002.00643.x
  2. Cai, Z. (2003). Wighted local linear approach to censored nonparametric regression. In Recent Advances and Trends in Nonparametric Statistics, edited by M. G. Akritas and D. M. Politis, Elsevier, 217-231.
  3. Chernozhukov, V. and Hong, H. (2002). Three-step censored quantile regression and extramarital affairs. Journal of the American Statistical Association, 97, 872-882. https://doi.org/10.1198/016214502388618663
  4. Fan, J., Yao, Q. and Tong, H. (1996). Estimation of conditional densities and sensitivity measures. Biometrika, 83, 189-206. https://doi.org/10.1093/biomet/83.1.189
  5. Gannoun, A., Saracco, J. and Yu, K. (2007). Comparison of kernel estimators of conditional distribution and quantile regression under censoring. Statistical Modelling, 7, 329-344. https://doi.org/10.1177/1471082X0700700404
  6. Ghouch, A. E. and Keilegom, I. V. (2009). Local linear quantile regression with dependent censored data. Statistica Sinica, 19, 1621-1640.
  7. Huh, J. (2012). Bandwidth selection for discontinuity point estimation in density. Journal of the Korean Data & Information Science Society, 23, 79-87. https://doi.org/10.7465/jkdi.2012.23.1.079
  8. Kim, C., Oh, M., Yang, S. and Choi, H. (2010). A local linear estimation of conditional hazard function in censored data. Journal of the Korean Statistical Society, 39, 347-355. https://doi.org/10.1016/j.jkss.2010.03.002
  9. Koenker, R. and Bassett, G. S. (1978). Regression quantiles. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
  10. Koenker, R. (2005). Quantile regression, Economic Society Monographs 38, Cambridge University Press, Cambridge.
  11. Lee, Y. K., Lee, E. R. and Park, B. U. (2006). Conditional quantile estimation by local logical regression. Nonparametric Statistics, 18, 357-373. https://doi.org/10.1080/10485250601014248
  12. Park, H. and Kim, J. S. (2011). An estimation of the treatment effect for the right censored data. Journal of the Korean & Information Science Society, 22, 537-547.
  13. Portnoy, S. (2003). Censored regression quantiles. Journal of the American Statistical Association, 98, 1001-1012. https://doi.org/10.1198/016214503000000954
  14. Susarla, V., Tsai, W. Y. and Van Ryzin, J. (1984). A Buckley-James type estimator for the mean with censored data. Biometrika, 71, 624-625. https://doi.org/10.1093/biomet/71.3.624
  15. Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. https://doi.org/10.1080/01621459.1998.10474104
  16. Yu, K., Lu, Z. and Stander, J. (2003). Quantile regression: Applications and current research areas. Journal of the Royal Statistical Society B, 52, 331-350.