• Title/Summary/Keyword: 중금속 제거

Search Result 626, Processing Time 0.025 seconds

Removal of heavy metal by coprecipitation with barium sulfate (황산바륨의 공침현상을 이용한 중금속 이온의 제거)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.280-284
    • /
    • 2006
  • The objective of this study is to investigate the removal of heavy metal by using the coprecipitation of barium sulfate. Several parameters governing the efficiency of the coprecipitation method were evaluated by the pH of sample solution, amount of coprecipitant, and addition of sulfide for the removal of As(V), Cd(II), Cr(III), Cr(VI), Cu(II), Hg(II) and Pb(II) metal ions ($10{\mu}g/ml$ each). The coprecipitation was about 80% - 95% only for lead at low pH but under 10% for other ions. The amount of removal was about 95% - 100% for Cd, Hg, Pb, Cu in the all pH range by the addition of sulfide with barium sulfate but As(V) and Cr(III, VI) ions were not affected by the same conditions.

Review for Equilibrium Model of Biosorption (생물흡착의 평형모델에 대한 고찰)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.48-54
    • /
    • 2009
  • Resent research on heavy metal biosorption has been focused on its mechanisms and principles. For effective metal removal/recoverythe process design has to be optimized for every type of application. That is most efficiently carried out based on computer simulations by means of mathematical models of the process. Therefore, the study on sorption equilibrium isotherm is important and the methodology wassummarized here involving both one metal and multi-metal systems.

Adsorption Characterization of Cd by Coal Fly Ash Using Response Surface Methodology (RSM) (반응표면분석법을 이용한 석탄회에서의 Cd 흡착특성에 관한 연구)

  • An, Sangwoo;Choi, Jaeyoung;Cha, Minwhan;Park, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • The batch experiments and response surface methodology (RSM) have been applied to the investigation of the cadmium (Cd) adsorption by coal fly ash (CFA). CFA having maximum Cd removal mass of 8.51 mg/g were calculated from Langmuir model. Cd removal reaction with different initial pH ranged from 4 to 9. When the initial pH was higher, Cd was removed more by adsorption and precipitation. These results suggest that the lower pH cause an increase of $H^+$ ion concentration which competed with Cd ions for exchange sites in CFA. Also, The Cd adsorption was mathematically described as a function of parameters initial Cd concentration ($X_1$), initial pH ($X_2$), and initial CFA mass ($X_3$) being modeled by use of the Box-Behnken methods. Empirical models were developed to describe relationship between the experimental variables and response. Statistical analysis indicates that tree factors ($X_1$, $X_2$, and $X_3$) on the linear term (main effects), and tree factors ($X_1X_2$, $X_1X_3$, and $X_2X_3$) on the non-linear term (Interaction effect; cross-product) had significant effects, respectively. In this case, the value of the adjusted determination coefficient (adjusted $R^2=0.9280$) was closed to 1, showing a high significance of the model. Statistical results showed the order of Cd removal at experimental factors to be initial initial pH > initial Cd concentration > initial CFA mass.

Evaluation of Removal Properties of Cu(II) from Aqueous Solutions by Inflated Vermiculites (팽창질석에 의한 수용액내의 구리 제거능 평가)

  • Song, Jaehong;Lee, Junki;Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.25-32
    • /
    • 2009
  • The main objective of this study was to examine the removal properties of Cu from water by inflated vermiculites. The component of vermiculites was analyzed by XRF and the concentration of Copper ion was measured by UV-VIS. Serial batch Kinetic tests and batch sorption tests were conducted to determine the removal characteristics for Cu in aqueous solutions. The result shows that removal rate, $K_{obs}$, of Cu are 0.73, 1.52, and 1.71 for initial pH 3, pH 4, pH 5, respectively, and are 3.19, 1.90, and 0.73 for the initial concentration of $1mg\;L^{-1}$, $5mg\;L^{-1}$, $10mg\;L^{-1}$, respectively. It leads to the conclusion that the removal rates are inversely proportional to the initial Cu concentration and are increased proportionally to the initial pHs. Finally, Sorption data were correlated with both Langmuir and Freundlich isotherms. As a result, Langmuir and Freundlich models were well fitted to batch isotherm data with good values of the determination coefficient. but the determination coefficient value for the Freundlich model fit was slightly higher than that of Langmuir model (0.965 for the Freundlich model and 0.936 for the Langmuir model). Using the Langmuir model, the maximum sorption capacity ($Q_{max}$), Freundlich partition coefficient, and the numerical value of n wrer estimated as $1,250mg\;kg^{-1}$, $635.1L\;kg^{-1}$ and 1.69, respectively. These results show that the inflated vermiculites could be used as an excellent adsorbent for copper contained in various types of aqueous solutions.

  • PDF

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

Dust Collecting Efficiency Using Cyclone Deduster in Weanned Piglet Building (자돈사에서의 사이크론 먼지제거기의 집진효율 분석)

  • 최희철;이덕수;권두중;강희설;유용희;송준익;성환후;김형호;천상석
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This study was carried out to investigate the collecting efficiency of cyclone deduster installed in weaned piglet building in third weeks of age. There are two peaks of high level of dust concentration in piglet house at the time of 09:00~10:00(5,322$\mu g/m^3$) and 19:00~20:00(6,763$\mu g/m^3$), but the peaks of dust concentration in the building used cyclone deduster was decreased to 3,614.8 and 2,229.5$\mu g/m^3$, respectively. Collecting efficiency of total suspended particulate(TSP), particulate matter less than 10$\mu\textrm{m}$(PM 10) and particulate matter less than 2.5$\mu\textrm{m}$(PM 2.5) in weaned piglet building used in cyclone deduster was 38.3%, 32.5, 21.8, respectively. Aerial dust in weaned piglet building by number basis in the range of 0.745~1.08$\mu\textrm{m}$ was 53.5%. But dust distribution over 10$\mu\textrm{m}$ in volume basis was 82.8% and 86.2%. Crude protein of dust was 25.9~32.7%, and it was higher than feed crude protein(22.0%). Heavy metal concentration of dust was also high level compare to that of feed.

  • PDF

Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling (Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1238-1243
    • /
    • 2005
  • The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

A Study on producing Inorganic Fertilizer from the Sludge of Water Supply Plant (정수장 슬러지를 이용한 무기질 비료의 제조에 관한 연구)

  • Lee, Jung-Ki;Beak, Sun-Gi;Kim, Zo-Cheon;Lee, Jeong-Il;Pyo, Byoung-Seok;Choi, Jong-Guen;Kim, Pan-Chae;Park, Gui-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.103-108
    • /
    • 2000
  • As it is forbidden to landfill the organic sludge generated in water treatment plant from 2001, disposal coast of the sludge will be highly incersed. Therefore, This Study was conducted to recyle the sludge of water supply plant as inorganic fertilizer for agricultural areas and forests using the Chemical and the Hydrothermal methods. As the result, we could manufacture sutiable inorganic fertilizer, removing organics and harmful heavy metals by the Chemical and the Hydrothermal method.

  • PDF

A Feasibility Study on the Development of Admixed Liner Using Gibbsite and Clay (Gibbsite 를 이용한 대체 차수재 개발 타당성 연구 - Batch Test를 통한 흡착실험을 중심으로 -)

  • 현재혁;이상현;이지훈
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.75-93
    • /
    • 1995
  • This study investigates the adsorption capacity of the gibbsite and the clay on the development of admixed liner. The gibbsite is produced as a by-product in the pretreatment process for cleaning and coloring of Alurninurn sash. From the study, following conclusions were obtained: 1) The adsorption of metals such as Cu(II), Cd(II), and Ni(II) and phenol on gibbsite and l:entonite was equilibrated rather quickly(12 ~48 hrs ). 2) The rate and extent of adsorption is a function of surface area the adsorbent having. 3) The Larigmuir isotherm is found to be more suitable than Freundlich isotherm for the adsorption analysis of heavy metals on gibbsite and bentonite. 4) In case of phenol, Freundlich isotherm, whose N value is close to 1, i.e., close to linear isotherm, is more fit to describe the adsorption on gibbsite and bentonite. 5) The amount of metals and phenol adsorbed is found to be in the following order : Adsorbent : $2{\mu}m-Al(OH)_3$ > Mixed Solid > $12{\mu}m-Al(OH)_3$ > Na-Bentonite > $30{\mu}m-Al(OH)_3$

  • PDF

Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone (제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리)

  • Jung Myung-Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.16-23
    • /
    • 2005
  • In order to remediate acid mine drainage (AMD) from the Jeongam coal mine, steel mill slag, cow manure and limestone were used. As a result of batch test, the proper amounts for treating 1 L of acid mine water from the mine were determined as 15 g of steel mill slag, 15 g of cow manure and 500 g of limestone. After feasibility test, remediation system was arranged in the order of steel mill slag tank combination of cow manure and limestone, precipitation tank and oxidation tank. During 54 days' operations, the pH values of the treated waters increased from 3.0 to 8.3 and 61 % of sulfate concentration in an initial water was decreased. In addition, the removal efficiencies for metals in the water were nearly 99.9% for Al, Fe, Zn and 92.6% for Mn. Thus, the combination of steel mill slag, cow manure and limestone can be used as neutralization 때d metal removal for acid mine drainage.