• Title/Summary/Keyword: 주파수 변환

Search Result 2,183, Processing Time 0.03 seconds

Four Channel Step Up DC-DC Converter for Capacitive SP4T RF MEMS Switch Application (정전 용량형 SP4T RF MEMS 스위치 구동용 4채널 승압 DC-DC 컨버터)

  • Jang, Yeon-Su;Kim, Hyeon-Cheol;Kim, Su-Hwan;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This paper presents a step up four channel DC-DC converter using charge pump voltage doubler structure. Our goal is to design and implement DC-DC converter for capacitive SP4T RF MEMS switch in front end module in wireless transceiver system. Charge pump structure is small and consume low power 3.3V input voltage is boosted by DC-DC Converter to $11.3{\pm}0.1V$, $12.4{\pm}0.1V$, $14.1{\pm}0.2V$ output voltage With 10MHz switching frequency. By using voltage level shifter structure, output of DC-DC converter is selected by 3.3V four channel selection signals and transferred to capacitive MEMS devices. External passive devices are not used for driving DC-DC converter. The total chip area is $2.8{\times}2.1mm^2$ including pads and the power consumption is 7.52mW, 7.82mW, 8.61mW.

A Study on the HEVC Video Encoder PMR Block Design (HEVC 비디오 인코더 PMR 블록 설계에 대한 연구)

  • Lee, Sukho;Lee, Jehyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.141-146
    • /
    • 2016
  • HEVC/H.265 is the latest joint video coding standard proposed by ITU-T SG 16 WP and ISO/IEC JTC 1/SC29/WG 11. In H.265, pictures are divided into a sequence of coding tree units(CTUs), and the CTU further is partitioned into multiple CUs to adapt to various local characteristics. Its coding efficiency is approximately two times high compared to previous standard H.264/AVC. However according to the size of extended CU(coding unit) and transform block, the hardware size of PMR(prediction/mode decision/reconstruction) block within video encoder is about 4 times larger than previous standard. In this study, we propose a new less complex hardware architecture of PMR block which has the most high complexity within encoder without any noticeable PSNR loss. Using this simplified block, we can shrink the overall size the H.265 encoder. For FHD image, it operates at clocking frequency of 300 MHz and frame rate of 60 fps. And also for the test image, the Bjøntegaard Delta (BD) bit rate increase about average 30 % in PMR prediction block, and the total estimated gate count of PMR block is around 1.8 M.

A study on image registration and fusion of MRI and SPECT/PET (뇌의 단일 광자 방출 전산화 단층촬영 영상, 양전자 방출 단층 촬영 영상 그리고 핵자기공명 영상의 융합과 등록에 관한 연구)

  • Joo, Ra-Hyung;Choi, Yong;Kwon, Soo-Il;Heo, Soo-Jin
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Nuclear Medicine Images have comparatively poor spatial resolution, making it difficult to relate the functional information which they contain to precise anatomical structures. Anatomical structures useful in the interpretation of SPECT /PET Images were radiolabelled. PET/SPECT Images Provide functional information, whereas MRI mainly demonstrate morphology and anatomical. Fusion or Image Registration improves the information obtained by correlating images from various modalities. Brain Scan were studied on one or more occations using MRI and SPECT. The data were aligned using a point pair methods and surface matching. SPECT and MR Images was tested using a three dimensional water fillable Hoffman Brain Phantom with small marker and PET and MR Image was tested using a patient data. Registration of SPECT and MR Images is feasible and allows more accurate anatomic assessment of sites of abnormal uptake in radiolabeled studies. Point based registration was accurate and easily implemented three dimensional registration of multimodality data set for fusion of clinical anatomic and functional imaging modalities. Accuracy of a surface matching algorithm and homologous feature pair matching for three dimensional image registration of Single Photon Emission Computed Tomography Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Magnetic Resonance Images(MRD was tested using a three dimensional water fill able brain phantom and Patients data. Transformation parameter for translation and scaling were determined by homologous feature point pair to match each SPECT and PET scan with MR images.

  • PDF

Comparison of Head-related Transfer Function Models Based on Principal Components Analysis (주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교)

  • Hwang, Sung-Mok;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.642-653
    • /
    • 2008
  • This study deals with modeling of head-related transfer functions(HRTFs) using principal components analysis(PCA) in the time and frequency domains. Four PCA models based on head-related impulse responses(HRIRs), complex-valued HRTFs, augmented HRTFs, and log-magnitudes of HRTFs are investigated. The objective of this study is to compare modeling performances of the PCA models in the least-squares sense and to show the theoretical relationship between the PCA models. In terms of the number of principal components needed for modeling, the PCA model based on HRIR or augmented HRTFs showed more efficient modeling performance than the PCA model based on complex-valued HRTFs. The PCA model based on HRIRs in the time domain and that based on augmented HRTFs in the frequency domain are shown to be theoretically equivalent. Modeling performance of the PCA model based on log-magnitudes of HRTFs cannot be compared with that of other PCA models because the PCA model deals with log-scaled magnitude components only, whereas the other PCA models consider both magnitude and phase components in linear scale.

Design of a Novel Instrumentation Amplifier using Current-conveyor(CCII) (전류-컨베이어(CCII)를 사용한 새로운 계측 증폭기 설계)

  • CHA, Hyeong-Woo;Jeong, Tae-Yun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.80-87
    • /
    • 2013
  • A novel instrumentation amplifier(IA) using positive polarity current-conveyor(CCII+) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of two CCII+, three resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into two CCII+ used voltage and current follower converts into same currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the CCII+ and used commercial op-amp LF356. Simulation results show that voltage follower used CCII+ has offset voltage of 0.21mV at linear range of ${\pm}$4V. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the gain of 60dB was 400kHz. The IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 130mW at supply voltage of ${\pm}$5V.

An Input/Output Technology for 3-Dimensional Moving Image Processing (3차원 동영상 정보처리용 영상 입출력 기술)

  • Son, Jung-Young;Chun, You-Seek
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.1-11
    • /
    • 1998
  • One of the desired features for the realizations of high quality Information and Telecommunication services in future is "the Sensation of Reality". This will be achieved only with the visual communication based on the 3- dimensional (3-D) moving images. The main difficulties in realizing 3-D moving image communication are that there is no developed data transmission technology for the hugh amount of data involved in 3-D images and no established technologies for 3-D image recording and displaying in real time. The currently known stereoscopic imaging technologies can only present depth, no moving parallax, so they are not effective in creating the sensation of the reality without taking eye glasses. The more effective 3-D imaging technologies for achieving the sensation of reality are those based on the multiview 3-D images which provides the object image changes as the eyes move to different directions. In this paper, a multiview 3-D imaging system composed of 8 CCD cameras in a case, a RGB(Red, Green, Blue) beam projector, and a holographic screen is introduced. In this system, the 8 view images are recorded by the 8 CCD cameras and the images are transmitted to the beam projector in sequence by a signal converter. This signal converter converts each camera signal into 3 different color signals, i.e., RGB signals, combines each color signal from the 8 cameras into a serial signal train by multiplexing and drives the corresponding color channel of the beam projector to 480Hz frame rate. The beam projector projects images to the holographic screen through a LCD shutter. The LCD shutter consists of 8 LCD strips. The image of each LCD strip, created by the holographic screen, forms as sub-viewing zone. Since the ON period and sequence of the LCD strips are synchronized with those of the camera image sampling adn the beam projector image projection, the multiview 3-D moving images are viewed at the viewing zone.

  • PDF

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

A Design and Implementation of NFC Bridge Chip (NFC 브릿지 칩 설계 및 구현)

  • Lee, Pyeong-Han;Ryu, Chang-Ho;Chun, Sung-Hun;Kim, Sung-Wan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • This paper describes a design and implementation of the NFC bridge chip which performs interface between kinds of devices and mobile phones including NFC controller through NFC communication. The NFC bridge chip consists of the digital part and the analog part which are based on NFC Forum standard. Therefore the chip treats RF signals and then transforms the signal to digital data, so it can interface kinds of devices with the digital data. Especially the chip is able to detect RF signals and then wake up the host processor of a device. The wakeup function dramatically decreases the power consumption of the device. The carrier frequency is 13.56MHz, and the data rate is up to 424kbps. The chip has been fabricated with SMIC 180nm mixed-mode technology. Additionally an NFC bridge chip application to the blood glucose measurement system is described for an application example.

Design of a Readout Circuit of Pulse Rate and Pulse Waveform for a U-Health System Using a Dual-Mode ADC (이중 모드 ADC를 이용한 U-Health 시스템용 맥박수와 맥박파형 검출 회로 설계)

  • Shin, Young-San;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.68-73
    • /
    • 2013
  • In this paper, we proposed a readout circuit of pulse waveform and rate for a U-health system to monitor health condition. For long-time operation without replacing or charging a battery, either pulse waveform or pulse rate is selected as the output data of the proposed readout circuit according to health condition of a user. The proposed readout circuit consists of a simple digital logic discriminator and a dual-mode ADC which operates in the ADC mode or in the count mode. Firstly, the readout circuit counts pulse rate for 4 seconds in the count mode using the dual-mode ADC. Health condition is examined after the counted pulse rate is accumulated for 1 minute in the discriminator. If the pulse rate is out of the preset normal range, the dual-mode ADC operates in the ADC mode where pulse waveform is converted into 10-bit digital data with the sampling frequency of 1 kHz. These data are stored in a buffer and transmitted by 620 kbps to an external monitor through a RF transmitter. The data transmission period of the RF transmitter depends on the operation mode. It is generally 1 minute in the normal situation or 1 ms in the emergency situation. The proposed readout circuit was designed with $0.11{\mu}m$ process technology. The chip area is $460{\times}800{\mu}m^2$. According to measurement, the power consumption is $161.8{\mu}W$ in the count mode and $507.3{\mu}W$ in the ADC mode with the operating voltage of 1 V.

Analysis of Nonlinear Characteristics in the Frequency Hopping Multiple Access(FHMA) Communication System (주파수 도약 다중 사용자 통신 시스템의 비선형 특성 분석)

  • 박주석;유흥균;김기근;이대일;김도선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.319-325
    • /
    • 2004
  • FHMA(frequency hopping multiple access) communication system has good performance for the LPI and AJ(low probability of intercept and anti-jamming) application. However, high PAPR(peak to average power ratio) happens in the base-station or the repeater system because of a large number of users. In general, predistorter is used to complete the HPA(high power amplifier) nonlinear characteristics. This paper analyzes BER performance when magnitude of IBO(input back oft) and the number of user are considered as the system parameters. In case of the SSPA(solid state power amplifier), the predistorter does not always work as a complete nonlinear compensator. We find that there is a minimum value of IBO for the predistorter to compensate for the nonlinear SSP A, which is changed as the number of user. If IBO is lower than 6 ㏈ at the user number of 16 and p=1, the system with predistorter is poorer than the one without predistorter. Only when the IBO is over 6 ㏈, predistorter does work as a nonlinear compensator. We call it as cross-over IBO value. TWTA improves the more compensation performance than SSPA because characteristic AM/AM of TWTA has more nonlinear than SSPA. At the BER=10$\^$-3/, there are SNR power gains of about 2.5 ㏈ and 3 ㏈ due to the predistorter when the numbers of users are 16 and 32, respectively.