Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.292-292
/
2021
최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.
In high dimensionality where the number of variables are excessively larger than observations, it is required to remove the noninformative variables to cluster observations. Most model-based approaches for variable selection have been considered under the assumption of homoscedasticity and their models are mainly estimated by a penalized likelihood method. In this paper, a different approach is proposed to remove the noninformative variables effectively and to cluster based on the modified normal mixture model simultaneously. The validity of the model was provided and an EM algorithm was derived to estimate the parameters. Simulation studies and an experiment using real microarray dataset showed the effectiveness of the proposed method.
Transportation decisions of ship liners are crucial for policy formulation in ports and shipping lines. Ship liners' port selection depends on the location characteristic of port. With network theory based, we empirically investigated determinants of global ship liners' port selection focused on major trade ports in China and Korea during 1995-2007. We present a detailed discussion on the related literatures about port selection, and develop hypothesis using network-based view. With conditional logit model, empirical results show that global liners select globally positioned ports rather than domestic oriented ones. Global ship liners select ports which have intra national network centrality, global ship network centrality and global network linkage.
Jin Hwi Kim;Hankyu Lee;Seohyun Byeon;Jae-Ki Shin;Yongeun Park
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.517-517
/
2023
현재 우리나라에서는 4대강 및 주요 호소 29지점을 대상으로 조류경보제가 시행되고 있으며 조류 경보 단계는 실시간 모니터링지점에서 측정되는 유해 조류의 셀농도를 기반으로 발령 단계가 결정된다. 상수원 구간은 관심, 경계, 조류 대발생, 해제 또는 미발생 총 4구간으로 구성되며, 친수 활동 구간의 경우 조류 대발생을 제외한 3구간으로 구성된다. 현재 시행되는 조류 경보제의 목적은 유해 조류 발생 시 사후 대응 방안 마련에 보다 초점이 맞춰져 있으며 특히, 모니터링 주기 확대 여부, 오염원 관리 방안 마련, 조류 제거 여부 등의 의사 결정 수단으로 사용되고 있다. 하지만 조류 경보 단계에 대한 사전 예측이 가능한 경우 유해 조류의 성장을 억제할 수 있으며 이를 통해 안전하고 깨끗한 수자원을 확보할 수 있다. 본 연구에서는 조류 경보 단계의 사전적 예측을 위해 국가 실시간 측정망에서 제공하는 전국 보 모니터링 종합 정보 자료, 기상측정망 자료, 실시간 보 현황 자료를 활용하여 예측 모델을 구축하였다. 또한, 단계 예측의 정확도를 개선하기 위해 변수 선택 기법을 활용하여 조류 경보 단계에 영향을 미치는 환경변수를 선정하였으며 자료의 불균형으로 인해 모델 학습 과정에서 발생하는 예측 오류를 최소화하기 위해 다양한 샘플링 기법을 적용하여 모델의 성능을 평가하였다. 변수 선택 및 샘플링 기법을 고려하지 않은 원자료를 사용하여 예측 모델을 구축한 결과 관심 단계(Level-1) 및 경보 단계(Level-2)에 대해 각각 50%, 62.5%의 예측 정확도를 보인 반면 비선형 변수 선택 기법 및 Synthetic Minority Over-sampling Technique-Edited Nearrest Neighbor(SMOTE-ENN) 샘플링 기법을 적용하여 구축한 모델에서는 Level-1은 85.7%, Level-2는 75.0%의 예측 정확도를 보였다.
국내의 도로용량편람에 근거한 좌회전 신호의 선택기준은 4방향 접근로 각각의 방향별 교통량, 좌회전 전용차로의 유무, 차로수 등의 수많은 요인들을 통해 결정된다. 이 요인들은 각각의 특성에 따라 좌회전 신호의 선택기준에 미치는 영향력이 다르며 그 영향력의 크기에 따라 변수를 결정해야 한다. 그러나 국내에서 사용되고 있는 대부분의 좌회전 신호의 선택기준은 이러한 검토 없이 해당도로의 한 방향 좌회전 교통량과 이와 마주보며 진행하는 직진 교통량, 차로수만을 기준으로 결정되고 있다. 따라서 본 연구는 국내 도로용량편람의 알고리즘을 이용하여 좌회전 신호의 선택기준에 영향을 주는 주요 요인을 밝히고, 이 결과를 이용하여 임계좌회전 교통량 (비 보호좌회전 신호로 신호교차로의 운영효율을 극대화 할 수 있는 최대 좌회전 교통량)을 제시함으로서 비 보호 좌회전 준거를 설정하고자 하였다. 본 연구에 의한 결과는 다음과 같다. 첫째, 좌회전 신호의 선택기준에 영향을 주는 주요요인은 해당도로의 좌회전 교통량, 대향직진 교통량, 차로수, 교차도로의 교통량과 차로수이며, 이 요인들 중에서 해당도로의 차로수가 좌회전 신호의 선택기준에 가장 큰 영향을 미치는 것으로 분석되었다. 그러나, 비 보호좌회전은 일반적으로 2차로에서 운영되므로 보편적인 상황에서의 비 보호좌회전 신호의 선택기준은 해당도로의 좌회전 교통량. 대향직진 교통량 및 교차도로의 교통량에 좌우된다. 둘째, 대향직진 교통량이 커질수록 임계좌회전 교통량은 감소하는 것으로 분석되었다. 셋째. 교차도로의 교통량이 커질수록 임계좌회전 교통량은 감소하는 것으로 분석되었다.
Korean Journal of Construction Engineering and Management
/
v.21
no.1
/
pp.12-20
/
2020
To estimate collusion effects on bid award in Public Construction works, this paper uses Logit Model, which is a choice variable model. Price, design, competition, and other factors are included, with a special focus on collusion, as independent variables in the model. The empirical results are as follows. First, collusion has little effects on bid award, but great impacts on bidding behavior. Secondly, the score of design is the most important and significant factors among all variables. Thirdly, competition has also significant effects on bid award. Finally it is analyzed that institutional framework and characteristics of public work have some effects on bidding award.
This paper revisits two conventional beliefs of environmental nonmarket valuation and examines their weaknesses and a new opportunity. The two beliefs are that willingness to pay (WTP) is an appropriate measure of nonmarket behaviour and that exogenous variables are relevant predictors of WTP whilst endogenous variables are not. The contemporary literature in psychology and economics is reviewed to demonstrate departures from these two beliefs. Tackling heterogeneity in stated preferences, both socio-demographic and psychological variables should be measured simultaneously to explain and predict choice behaviours more accurately.
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.41-42
/
2018
특징 선택이란, 기계학습에서 분류 정확도를 향상시키기 위해서 많은 특징들을 분석해 가장 좋은 성능을 나타낼 수 있게끔 특징의 부분집합을 찾아내는 방법이다. 특징 선택 연구는 수십만개의 변수가 있는 데이터 세트를 이용하는 응용분야에서 주로 연구된다. 이러한 응용 분야는 주로 텍스트 처리, 유전자 배열 분석과 같은 고차원 데이터를 분석하는 분야이다. 또한, IoT 환경은 많은 데이터를 처리하기 때문에, 데이터 분류나 데이터의 가공을 위해서는 특징 선택 기법이 필수적이다. 본 논문에서는 특징 선택 기법에 대해 설명하고, IoT 환경에서 특징 선택 기법을 제안한다.
Journal of the Korea Society of Computer and Information
/
v.25
no.6
/
pp.35-47
/
2020
Box-office prediction is important to movie stakeholders. It is necessary to accurately predict box-office and select important variables. In this paper, we propose a multivariate time series classification and important variable selection method to improve accuracy of predicting the box-office. As a research method, we collected daily data from KOBIS and NAVER for South Korean movies, selected important variables using Random Forest and predicted multivariate time series using Deep Learning. Based on the Korean screen quota system, Deep Learning was used to compare the accuracy of box-office predictions on the 73rd day from movie release with the important variables and entire variables, and the results was tested whether they are statistically significant. As a Deep Learning model, Multi-Layer Perceptron, Fully Convolutional Neural Networks, and Residual Network were used. Among the Deep Learning models, the model using important variables and Residual Network had the highest prediction accuracy at 93%.
Journal of the Korea Society of Computer and Information
/
v.20
no.4
/
pp.95-102
/
2015
This paper proposes a simple algorithm for circuit minimization. There are currently two effective heuristics for circuit minimization, namely manual Karnaugh maps and computable Quine-McCluskey algorithm. The latter, however, has a major defect: the runtime and memory required grow $3^n/n$ times for every increase in the number of variables n. The proposed algorithm, however, extracts the prime implicants (PI) that cover minterms of a given Boolean function by deriving an implicants table based on frequency. From a set of the extracted prime implicants, the algorithm then eliminates redundant PIs again based on frequency. The proposed algorithm is therefore capable of minimizing circuits polynomial time when faced with an increase in n. When applied to various 3-variable and 4-variable cases, it has proved to swiftly and accurately obtain the optimal solutions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.