• 제목/요약/키워드: 주성분 분석(PCA)

검색결과 656건 처리시간 0.031초

강인한 주성분 분석법을 갖는 화자인식 (Speaker Recognition Based on Robust PCA)

  • 이윤정;이기용
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.225-228
    • /
    • 2002
  • 본 논문에서는 화자인식을 위하여 강인한 주성분 분석법(Robust Principal Component Analysis)을 갖는 화자인식 방법을 제안하였다. 강인한 주성분 분석법은 특징벡터들의 outlier가 존재할 경우 k-차원으로 줄이면서 강인한 화자 모델을 만들기 위하여 사용한다. 기존의 PCA 방법은 순수한 화자의 정보가 잡음 등의 outlier에 의해 손상될 수 있으므로, 강인한 주성분 분석법을 사용하여 outlier의 영향을 감소 시켰다. 화자 별로 k-차원 diagonal GMM 학습시 mixture 수를 적응시켜 데이터 저장 공간을 최소화하였다. 200명의 고립 숫자음을 사용하여 기존의 diagonal GMM 방법과 제안된 방법을 실험한 결과, 제안된 방법에서 약 $1.5\%$더 높은 인증률을 얻을 수 있었다.

  • PDF

주성분 분석을 활용한 안드로이드 악성코드 분류 성능 향상 방안 (Performance Enhancement of Android Malware Classification using PCA)

  • 전동하;이수진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.249-250
    • /
    • 2022
  • 최근 API Call을 기반으로 하는 악성코드 탐지 및 분류에 대한 연구가 활발히 진행되고 있다. 그러나 API Call 기반의 데이터는 방대한 양과 다양한 차원의 특성으로 인해 분석과 학습 모델 구축 측면에서 비효율적인 한계가 있다. 이에 본 연구에서는 방대한 API Call 정보를 포함하고 있는 CICAndMal2020 데이터 세트를 대상으로 기존의 특성 선택 기법이 아닌 주성분 분석(Principal Component Analysis)을 사용하여 차원을 대폭 축소 시킨 후 머신러닝 기법을 적용하여 분류를 시도하였다. 실험 결과 전체 9,503개의 특성을 25개의 주성분(전체 대비 약 0.26% 수준)으로 축소시키고 다중 분류 기준 약 84%의 정확도를 나타냈다. 결과적으로 기존 연구에서의 탐지 모델 대비 정확도, F1-score 등의 성능 향상은 물론 차원 축소 측면에서 매우 향상된 결과를 달성하였다.

  • PDF

수정된 반복 주성분 분석 기법에 대한 연구 (Modified Recursive PC)

  • 김동규;김아현;김현중
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.963-977
    • /
    • 2011
  • 다변량 자료를 분석함에 있어 자료의 차원을 축소하는데 활용되는 중요한 툴 중 하나인 PCA 분석(주성분 분석, Principal Component Analysis)을 실시간으로 처리해야 하는 적용 분야가 최근 늘고 있다. PCA 분석에서는 표본 공분산 행렬의 고유값과 고유벡터를 도출하는 것이 관건인데, 자료의 양이 방대하며 고차원인 경우 이를 실시간으로 수행하기에는 어려움이 따른다. 이러한 문제점을 해결하기 위해서 Erdogmus 등 (2004)는 일차 섭동 이론(first order perturbation theory)을 활용하여 공분산 행렬의 고유값과 고유벡터를 추정하는 Recursive PCA 방법을 제안했다. 이 방법은 추가된 자료의 양이 많지 않은 경우는 상당히 정확하지만, 추가된 자료의 양이 많아짐에 따라 오차도 커진다는 한계를 가지고 있다. 본 논문은 공분산 행렬의 고유값과 고유벡터가 가지고 있는 수학적 관계를 이용하여 Erdogmus 등 (2004)가 제안한 Recursive PCA 방법을 수정한 Modi ed Recursive PCA 방법을 제안하다. 또한, 모의 실험을 통해 Recursive PCA 방법과 Modi ed Recursive PCA 방법에서의 고유값과 고유벡터 추정값의 정확도를 비교해 보았으며 그 결과 기존 Recursive PCA 방법 보다 정확한 추정이 가능함을 확인할 수 있었다.

잡음 민감성이 개선된 변형 퍼지 주성분 분석 기법 (A Variant of Improved Robust Fuzzy PCA)

  • 김성훈;허경용;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.25-31
    • /
    • 2011
  • 주성분 분석(PCA)은 차원 축소와 특징 추출을 위해 널리 사용되는 기법 중의 하나이지만 자승 오류의 사용으로 인해 잡음에 민감한 단점이 있다. 이러한 잡음 민감성을 개선하기 위해 다양한 방법이 소개되었고 그 중 improved robust fuzzy PCA(RF-PCA2)는 퍼지 소속도를 이용한 반복적 최적화 기법으로 다른 방법에 비해 우수한 성능을 보였다. 하지만 RF-PCA2 역시 국부적인 최적해에 빠질 수 있으며 그 원인 중 하나는 RF-PCA2 알고리듬이 소속도를 균일한 값으로 초기화시키기 때문이다. 또한 퍼지 소속도를 사용하고 있지만 여전히 목적함수가 자승 오류 최소화에 기초하고 있다는 사실도 그 원인이 된다. 이 논문에서는 RF-PCA2의 이러한 문제점을 개선한 RF-PCA3를 제안한다. 제안하는 알고리듬은 RF-PCA2의 목적 함수를 바탕으로 하고 있다. 여기에 PCA의 목적 함수를 추가하고 초기 소속도 값을 데이터의 분포로부터 계산함으로써 전역 최적해에 가까운 해를 얻을 수 있는 가능성을 높여준다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

최근 5년간 국내 연근해에서 발생한 해양사고에 대한 주성분분석 (Principal Component Analysis on Marine Casualties Occurred at Korean Littoral Sea in Recent 5 Years)

  • 김영식
    • 수산해양교육연구
    • /
    • 제28권2호
    • /
    • pp.465-472
    • /
    • 2016
  • 본 연구에서는 2010년부터 2014년까지 최근 5년간 우리 나라 주변해역에서 발생하여 중앙해양안전심판원의 재결을 마친 1417건의 해양사고에 대해 이를 25개 요인별로 분류하고, SPSS 통계 프로그램에 의한 주성분분석(Principal Component Analysis; PCA)을 행하여 이들 각 요인들의 상관성 및 주요 해양원인을 분석 고찰하였다. 얻어진 주요한 결과들을 요약하면 다음과 같다. 1. 해양사고의 주된 원인은 기관설비취급불량, 화기취급불량, 항행법규소홀, 침로선정유지불량, 경계소홀 등 기관실 및 조타실 관련 인적요인에 의해 발생한다. 2. 조타실 관련 인적요인에 의해 발생하는 사고는 충돌과 좌초 등이 큰 비중을 차지하며, 기관실 관련 인적요인에 의해 발생하는 사고유형은 주로 기관손상이나 화재폭발 등이다. 3. 주성분분석의 결과 제1주성분은 해양사고의 출현율을, 제2주성분은 해양사고의 원인을, 제3주 성분은 해양사고의 유형을 나타낸다.

신경망을 이용한 로버스트 주성분 분석에 관한 연구 (On Robust Principal Component using Analysis Neural Networks)

  • 김상민;오광식;박희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제7권1호
    • /
    • pp.113-118
    • /
    • 1996
  • 주성분 분석은 자료압축, 특징추출, 통신이론, 패턴인식 그리고 화상처리등의 컴퓨터 공학분야에서 중요하게 사용되고 있다. Oja(1982,1989,1992)는 확률적 경사 강하법(SGA:Stochastic Gradient Ascent)을 이용한 제한된 헵규칙을 제안하여 주성분 분석에 사용하였다. 그러나, 이 규칙은 이상치에 민감하므로 이상치의 영향을 줄이기 위해, Xu & Yuille(1995)는 통계물리 방법을 이용한 로버스트 에너지함수를 생성하여 로버스트 주성분 분석방법을 제안하였다. 또한 Devlin et.al(1981)은 M-추정량을 이용하여 주성분 분석을 하였다. 본 논문에서는 Oja(1992)의 규칙과 Xu & Yuille(1995)의 로버스트 에너지함수를 이용하여 신경망을 구성하였다. 그리고, Devlin et.al(1981)이 제안한 시뮬레이션조건하에서 실험을 하였다. 실험한 결과와 Devlin et.al(1981)의 결과를 비교, 분석함으로써, 신경망의 성능을 확인하고자 한다.

  • PDF

주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류 (PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity)

  • 진계환;조현숙;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제14권4호
    • /
    • pp.211-217
    • /
    • 2003
  • 주성분분석은 잘 알려진 데이터 분석 방법으로써 높은 차원의 데이터를 낮은 차원의 데이터로 표현하는데 효과적이어서 얼굴인식, 데이터 압축 등에 이용되고 있다. 주성분분석을 하게 되면 원 데이터의 공분산 행렬로부터 정규직교한 고유벡터와 해당하는 고유치를 얻게 되고 그 중 큰 값을 가지는 고유벡터 들을 선택하여 선형 변환함으로써 데이터의 차원을 줄일 수 있게 된다. 망막에 빛 자극이 인가되면 시세포 층에서 전기신호로 변환된 후 복잡한 신경회로를 거쳐 최종적으로 신경절세포 층에서 활동전위의 형태로 출력되게 된다. 본 연구에서는 다채널전극을 사용하여 여러 개 망막 신경절세포로부터 유래되는 활동전위를 기록한 후 개개의 신호를 구분하는 과정을 거치고, 이어서 그 신호를 만들어 내는 각 뉴론들끼리의 시간적, 공간적 흥분발사 패턴을 이해함으로써 궁극적으로 시각정보 인코딩 기전을 밝히려는 연구 목표하에 그 첫 단계로서 망막 신경절세포의 활동전위를 기록한 후 분류하는 과정을 성공적으로 수행하였기에 그 내용을 서술하고자 한다. 망막에서 기록되는 신경절세포 활동전위는 불규칙하고 확률적이기 때문에 주성분분석을 통하여 그 유형을 분류할 수 있었다. 토끼 눈으로부터 망막을 박리하여 망막조각을 얻은 후 신경절세포 층이 전극표면을 향하도록 전극에 부착하였다. 8${\times}$8의 microelectrode array (MEA)를 전극으로 사용하였고, 증폭기는 MEA 60 system을 사용하여 신경절세포 활동전위를 기록하였다. 활동전위 기록 후 파형 분류를 하였다. 잡음이 섞여있는 기록으로부터 신호를 검출하기 위하여, 잡음역치($\pm$3$\sigma$)를 설정하였다. 역치를 넘는 파형 만을 획득한 후 주성분분석을 통해 각 파형의 첫 번째 주성분, 두 번째 주성분을 계산하여 2차원 평면에 투사함으로써 몇 개의 의미있는 클러스터를 얻었다. 이 클러스터는 곧 각 신경절세포에서 유래되는 파형을 반영하므로 주성분분석을 통하여 망막 신경절세포의 활동전위를 각 세포별로 분류할 수 있음을 확인하였다.

  • PDF

가버 텐서를 이용한 얼굴인식 성능 개선 (Efficiency Improvement on Face Recognition using Gabor Tensor)

  • 박경준;고형화
    • 한국통신학회논문지
    • /
    • 제35권9C호
    • /
    • pp.748-755
    • /
    • 2010
  • 본 논문은 가버 텐서(Gabor tensor)를 이용한 얼굴인식 시스템을 제안하였다. 가버 변환은 얼굴 고유의 특징을 잘 나타내주며 외부적인 영향을 줄일 수 있어 인식률 향상에 기여한다. 이러한 특징을 이용한 3차원의 텐서를 구성하여 얼굴인식을 수행하는 방법을 제안한다. 3차원의 가버 텐서를 입력으로 하여 기존의 1차원이나 2차원 주성분 분석법(PCA)보다 다양한 특징을 이용할 수 있는 다중선형 주성분 분석법(Multilinear PCA)를 수행한 다음 선형 판별법(LDA)을 수행하는 얼굴인식 방법을 제안하였다. 이러한 방법들은 표정이나 조명등의 변화에 강인한 특성을 가진다. 제안한 방법은 매트랩(Matlab)을 이용하여 실험하였다. ORL과 Yale 데이터베이스를 이용한 실험 결과를 기존의 방법들과 비교하였을 경우 제안한 방법이 기본적인 1차원 주성분 분석법보다 최대 9~27% 향상된 우수한 인식성능을 나타냄을 확인할 수 있었다.

주성분 분석법을 이용한 머리전달함수 모형화 기법의 성능 비교 (Comparison of Head-related Transfer Function Models Based on Principal Components Analysis)

  • 황성목;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제18권6호
    • /
    • pp.642-653
    • /
    • 2008
  • 이 연구는 중앙면 상에서 주성분 분석법을 이용하여 시간 및 주파수 영역에서 머리전달함수의 모형화 기법들을 다룬다. 시간영역의 머리전달함수, 복소수 값의 머리전달함수, 확장된 머리전달함수, 로그 크기의 머리전달함수에 기반하여 각각 주성분 분석법을 수행하여 얻은 네 가지 머리전달함수 모형들에 대해서 최소자승오차 관점에서 모형화 성능을 비교하고, 모형들간의 이론적인 관계를 살펴보는 것이 이 연구의 목적이다. 모형화에 사용되는 기저함수의 수가 동일하다면, 시간영역에서의 머리전달함수 혹은 확장된 머리전달함수에 기반한 모형이 복소수 값의 머리전달함수에 기반한 모형보다 최소자승오차 관점에서 더 효율적인 모형화 성능을 지닌다. 시간영역에서의 머리전달함수에 기반한 모형과 확장된 머리전달함수에 기반한 모형은 이론적으로 동일한 모형이며 서로 푸리에 변환 관계가 있다. 로그 크기의 머리전달함수에 기반한 모형은 다른 모형들과 모형화 성능 및 이론적인 관계를 비교할 수가 없는데, 이는 로그 크기의 머리전달함수에 기반한 모형은 머리전달함수의 크기 정보만을 로그 크기로 다루는 반면에 다른 모형들은 선형 크기로 머리전달함수의 크기와 위상정보를 모두 다루기 때문이다.

주성분분석을 이용한 간선도로 구간 별 차량 당 CO2 다량 배출구간 평가 (Assessment of CO2 Emissions of Vehicles in Highway Sections Using Principal Component Analysis)

  • 이윤석;김다예;오흥운
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1981-1987
    • /
    • 2013
  • 차량의 $CO_2$ 배출량은 통행속도에 따라 다르게 나타난다. 또한, 차량의 통행속도는 도로의 종류나 위치, 시간대, 교통량 등에 따라 다르게 나타난다. 본 논문에서는 주성분분석(PCA : Principal Component Analysis)을 이용하여 간선도로 구간 별 시간대 별로 차량 당 $CO_2$ 다량 배출구간을 판별하여 평가하였다. 분석 결과, 주성분분석 결과 제 1주성분과 제 2주성분으로 성분이 구분되는 것을 알 수 있었고 시간대가 각 주성분을 설명할 수 있는 주요 성분임을 알 수 있었다. 제 1주성분의 경우 새벽시간대와 오후시간대로 주성분을 설명할 수 있었다. 제 2주성분의 경우 오전, 오후 첨두시 시간대로 주성분을 설명할 수 있었다. 그리고 주성분 점수를 산출하여 분석한 결과 제 1주성분의 경우 새벽시간대에도 정체현상이 지속되는 잠원IC~한남대교 구간이 타 구간에 비해 주성분 점수가 높게 나타났고 제 2주성분의 경우 오전,오후 첨두시의 정체현상이 극심한 서울시 접속부와의 이격이 가까운 구간에서 주성분 점수가 높게 나타났다. 결과적으로 주성분 점수를 통하여 차량 당 $CO_2$ 다량 배출 구간을 판별할 수 있었다.