Performance Enhancement of Android Malware Classification using PCA

주성분 분석을 활용한 안드로이드 악성코드 분류 성능 향상 방안

  • Jeon, Dong-Ha (Dept. of Defence Science, Korea National Defense University) ;
  • Lee, Soo-Jin (Dept. of Defence Science, Korea National Defense University)
  • 전동하 (국방대학교 국방과학학과) ;
  • 이수진 (국방대학교 국방과학학과)
  • Published : 2022.07.13

Abstract

최근 API Call을 기반으로 하는 악성코드 탐지 및 분류에 대한 연구가 활발히 진행되고 있다. 그러나 API Call 기반의 데이터는 방대한 양과 다양한 차원의 특성으로 인해 분석과 학습 모델 구축 측면에서 비효율적인 한계가 있다. 이에 본 연구에서는 방대한 API Call 정보를 포함하고 있는 CICAndMal2020 데이터 세트를 대상으로 기존의 특성 선택 기법이 아닌 주성분 분석(Principal Component Analysis)을 사용하여 차원을 대폭 축소 시킨 후 머신러닝 기법을 적용하여 분류를 시도하였다. 실험 결과 전체 9,503개의 특성을 25개의 주성분(전체 대비 약 0.26% 수준)으로 축소시키고 다중 분류 기준 약 84%의 정확도를 나타냈다. 결과적으로 기존 연구에서의 탐지 모델 대비 정확도, F1-score 등의 성능 향상은 물론 차원 축소 측면에서 매우 향상된 결과를 달성하였다.

Keywords