• Title/Summary/Keyword: 주상용출시험

Search Result 4, Processing Time 0.015 seconds

Potential Environmental Influences in Soil by Accidental Fluorine (F) Leakage, Using Leaching Test (용출시험을 통한 불산 누출사고지역의 토양 내 불소(F)의 거동특성)

  • Kim, Doyoung;Lee, Junseok;Kwon, Eunhye;Lee, Hyun A;Yoon, Hye-On;Lee, Sanghoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.234-239
    • /
    • 2015
  • Various leaching tests were applied to the soil affected by accidental leakage of HF in an industrial area in Korea. Three different leaching methods including pH-stat, continuous batch leaching, and column tests were adopted to assess leaching characteristics and mobility of fluorine(F) in soil and the potential risks to ecosystem. Both natural and spiked samples were used for the leaching tests. F concentrations in the batch tests increased by leaching rapidly in the early stage of leaching and then maintained rather constant levels. Column leaching test also show similar result to that of the batch test. pH also controlled the leaching behavior of the soil. With increasing pH, more F was released in the pH-stat test. This is mainly due to the competition and exchange with hydroxyl ions, as pH increase to the alkaline range. Most of the F released by the accident seem to have removed in the very early stage of leaching, whereas some natural proportion from soil minerals are thought to have been released very slowly. Therefore, little F released during the accident remained, based on the results of this study on the samples after two years of the accident. We could conclude that soil contaminated by external effects such as chemical accidents should be managed immediately, especially with F.

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

Potential Element Retention by Weathered Pulverised Fuel Ash : II. Column Leaching Experiments (풍화 석탄연소 고형폐기물(Pulverised Fuel Ash)의 중금속 제거가능성 : II. 주상용출실험)

  • Lee, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 1995
  • Column leaching tests were conducted using fresh and weathered pulverised fuel ash of some 17 and 40 years old from two major British power plants, with deionised water and simulated synthetic industrial leachate. The former was to see the leaching behaviour of weathered ash and the latter was to see if the formation of secondary products from water and PFA interaction and ameliorating effect in removing metals from industrial leachates. Fresh PFA liberates elevated concentrations of surface-enriched inorganics, including Ca, Na, K, B, $Cr_{total}$, Li Mo, Se and $SO^{2-}_4$. This might indicate their association with the surface of PFA particles. In the column leaching tests using weathered ash and deionised water, elements are not readily leached but are released more slowly, showing relatively constant concentrations. For the case of weathered ash, some readily soluble surface-enriched elements appears to have been liberated in their early stage of leaching and the liberation of glass associated elements are thought to be more important function in controlling the element concentration. The result from column leaching tests exceed for a number of elements when compared with various Water Standards and suggests the leachate from PFA disposal mound needs dilution to achieve target concentrations. PF A shows element retention effect for many elements, including B, Fe, Zn, Hg, Ni, Li and Mo, in the order of fresh Drax ash > weathered Drax ash > Weathered Meaford ash in retaining capacity. Geochemical modelling using a computer program WATEQ4F reveals some solubility controlling secondary solid products. These include $CaSO_4{\cdot}2H_2O$ for Ca, $Al(OH)_3$ for Al and $Fe(OH)_3$ for Fe.

  • PDF

Influence of Sulfate on the Early Hydration in the Solidification of Lime-tailings (소석회-광물찌꺼기 고형화의 초기 수화에 미치는 황산염의 영향)

  • Lee, Hyun-Cheol;Min, Kyoung-Won;Yoo, Hwan-Geun
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.535-544
    • /
    • 2013
  • Influence of sulfate on the early hydration in the solidification treatment of abandoned mine tailings was characterized. Solidified specimens using hydrated lime as a binder were prepared with various amounts of added $Na_2SO_4$ and different curing days. Unconfined compressive strength measurement, heavy metal leaching test, XRD analysis were performed after 7-, 14- and 28-days curing. According to curing days strength of solidified specimens using only distilled water increased but those with addition of $Na_2SO_4$ decreased. External cracks of specimens developed definitely with increasing $Na_2SO_4$ concentration and curing days. Concentrations of Cu, Cd, Zn, and As in the leached solutions from solidified specimens decreased significantly but Pb was leached readily in cases of hydrated lime dosage more than 10 wt%. Gypsum and $MgSO_4$ were identified in the cracked solidified specimens by XRD analysis, and pillar-shaped crystals of SEM image were identified as gypsum in reference with EDS analysis. Crystallization of sulfate in the process of lime-tailing solidification caused cracking, which should be supplemented for solidification treatment of highly sulfur-contained tailing.