• Title/Summary/Keyword: 주변지반

Search Result 869, Processing Time 0.031 seconds

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

The behavior of adjacent structures in tunnelling induced ground movements (터널 시공에 따른 지반 및 인접건물의 거동평가)

  • Kim, Hak-Moon;Jeon, Seong-Kon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.313-322
    • /
    • 2003
  • This research work presents 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

A Study on Consolidation Characteristics by Considering the Initial Radial Compression at Sand Pile Adjacent Ground (샌드파일 주변지반에서 초기 방사방향 압축에 의한 압밀특성 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.649-656
    • /
    • 2000
  • Consolidation of the ground surrounding the sand piles is delayed by well resistance and smear effect. This study is executed to understand the factors that affect the characteristics of consolidation. This was accomplished by utilizing the estimated and measured values of the soil properties through the monitoring of the ground surrounding the sand piles. When it is assumed that the horizontal coefficient is equal to the vertical coefficient of consolidation, the estimated values is exceedingly similar to the measured values. The properties of the initially disturbed soil by the sand pile installation seemed to improve through the process of consolidation with the passage of time. From the results of the analysis of the settlement measurement, the measured values occurred about 60~90% of the predicted values. Considering the initial radical compression deformation, according to the theory of cavity expansion, the difference between the two appears to be in good agreement. In this study, to understand the behavioral characteristics of the ground surrounding the sand piles requires estimation through considering the initial radial compression as well as smear effect of the soil disturbance and well resistance.

  • PDF

A Study on the Displacement Behavior according to the Analysis Model of Ground Excavation (지반굴착 해석모델에 따른 변위거동에 관한 연구)

  • Chung, Jeeseung;Shin, Youngwan;Kim, Manhwa;Kook, Yunmo;Jeong, Kyukyung;Kim, Pilsoo;Lee, Sanghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.27-32
    • /
    • 2018
  • There were many ground excavation projects from past to present to make effective use of the limited land. And it is very important to predict the ground behavior depending on construction stage for ground excavation. Excavation of the ground involves changes in the stress and displacement of the ground around the excavated surface. Thus it affects the stability of the adjacent structure as well as the excavated surface. Therefore, it is very important to predict the ground behavior and stability of adjacent structure. And nowadays, numerical analysis methods are most often used to predict the effects of ground excavation. Recent, improvements of numerical analysis programs, along with improved computer performance, have helped solve complicated ground problems. However, except some specialized numerical analysis, most numerical analysis often predicts larger excavation floor displacement than field data due to adopt the Mohr-Coulomb analysis model. As a result, it raise the problem that increasing the amount of support on ground and structure. In this study, ground behavior analysis depending on analysis model (Mohr-Coulomb, Duncan-Chang, Modified Mohr-Coulomb and Hardening Soil model) has been carried out through the numerical analysis. When numerical analysis is carried out, this study is expected to be used as a basic data for adopting a suitable analysis model in various ground excavation project.

시멘트를 이용한 지반개량 및 시멘트계 건설폐기물의 재활용에 의한 환경오염

  • Min, Soo-Hong;Moon, Se-Heum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.267-267
    • /
    • 2008
  • 시멘트를 이용한 지반개량 및 시멘트계 건설폐기물을 (예, 폐콘크리트, 및 시멘트 개량토 등) 성토재로 재활용하는 경우 지반 환경에 미칠 수 있는 영향으로는 (1) 시멘트에 함유된 6가 크롬($Cr^{6+}$) 및 (2) 강알칼리 물질의 용출이 있을 수 있다. 특히 $Cr^{6+}$의 경우 인체에 치명적인 발암성물질로 알려져 있어 이에 따른 주의가 필요하다. 최근 일본에서는 시멘트의 $Cr^{6+}$에 의한 지반오염이 우려됨에 따라 2000년 시멘트계 고화재를 지반에 사용하는 경우와 개량된 토양을 재이용하는 경우에는 토양환경기준을 만족하도록 규제하고 있다. $Cr^{6+}$외의 시멘트계 물질에 의한 환경오염으로는 강알칼리 물질의 유출이 있을 수 있다. 시멘트 개량토나 폐콘크리트 등의 건설폐기물을 성토재로 재활용하는 경우, 강우의 유입에 따라 구성물질인 수산화칼슘이 용해되어 높은 pH의 유출수가 발생한다. 강알칼리 유출수가 주변 하천 등으로 유입되는 경우 심각한 환경문제를 유발할 수 있으므로 이에 대한 기술적 검토가 필요하다. 본 발표에서는 시멘트계 물질에 의한 일본의 지반환경오염 사례 및 대책을 소개하였다.

  • PDF

Back-analysis Technique in Tunnelling Using Extended Bayesian Method md Relative Convergence Measurement (확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법)

  • Choi Min-Kwang;Cho Kook-Hwan;Lee Geun-Ha;Choi Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.99-108
    • /
    • 2005
  • One of the most important and difficult tasks in designing underground structure is the estimation of engineering properties of the ground. The main purpose of this study is to propose a new back-analysis technique in tunnelling to estimate geotechnical parameters around a tunnel. In this study, the Extended Bayesian Method, which appropriately combines objective information with subjective one, is adopted to optimize engineering parameters. By using only relative convergence data measured during tunnelling as input values in back-analysis, inevitable errors in absolute convergence estimation are excluded and 3-dimensional numerical analysis is applied to consider a trend of relative convergence occurrence. Finally, 3-dimensional back-analysis technique using relative convergence is proposed and evaluated using a hypothetical site.

Ground Behavior around Tunnel Using Tunnel-shaped Trapdoor Model Test (터널형상의 Trapdoor 모형실험을 통한 지반 거동에 관한 연구)

  • Han, Young-Chul;Kim, Sang-Hwan;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.65-80
    • /
    • 2014
  • This study conducted Trapdoor tests with actual tunnel shape, investigated the mechanical behavior of ground and loosening load on tunnels, and evaluated the mechanism of progressive failure by numerical simulation. The loosening load sharply decreased initially, but it generally increased and reached the stabilized level exhibiting the arching effect, and loose sand showed relatively higher values than those of dense sand. The shear band started from the tunnel shoulder with $63^{\circ}$ (loose sand) to $69^{\circ}$ (dense sand), and gently curved inward to the ground surface. The widths of shear band formation above the tunnel showed a range from 1.8b to 1.9b (b=Tunnel width), which are similar to those values calculated from existing formular. The vertical height of this shear band for deep tunnel was turned out to be a bit lower than that from existing studies (3.0*Tunnel Height).

Lateral Earth Pressures Acting on Piles in Cohesive Soil (점토지반(粘土地盤)속의 말뚝에 작용(作用)하는 측방토압(側方土壓))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 1982
  • A theoretical equation is presented to estimate lateral earth pressures acting on piles in a row in cohesive soil. Then. a series of model tests are carried out for various conditions of the piles and the soil to check the validity of the theoretical equation. As a result of the model tests, the validity of an assumption on the plastic state of soil made in the theoretical derivation and the significance of the theoretical values are clarified. And. the experimental and theoretical values give very good agreements for various kinds of soil strength, pile diameters and intervals between piles. Consequently, the theoretical equation can be used to estimate the lateral earth pressures acting on piles in a row when the soil just around piles become a plastic state.

  • PDF

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

Bearing Capacity Characteristics of Stone Column by Numerical Analysis (수치해석에 의한 쇄석기둥의 지지력 특성)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which can enhance ground conditions such as the settlement reduction and the increasement of bearing capacity with applying the crushed stone instead of sand. In recent, general construction material, sand is in short of supply. Therefore, the bearing capacity improvement by the stone column is considered as the alternative method needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improvement effect of ground is not yet prepared. For the analysis of above mentioned points, the behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, the formula for the bearing capacity estimation of stone column was suggested. This formula was verified by comparing the prediction result of in situ test.

  • PDF