1980년을 전후하여 카오스연구가 물리학에서 왕성하게 이루어졌다. 미국의 물리학자 파이겐바움(M. J. Feigenbaum)이 보편상수를 발견한 것이(1978) 중요한 계기가 되었다. 파이겐바움의 보편상수는 카오스현상에서 공통적으로 발견할 수 있다. 보편상수를 탐구하기 위해서는 주기, 배가, 파이겐바움 분기도에 대한 이해가 필요하다. 프로그래밍을 통하여 일반적으로 소개하고 있으므로, 프로그래밍에 대한 깊은 이해없이는 분기도를 탐구하기 어렵다. 프로그래밍을 통해서는 나타나는 결과만을 이해할 수 있다. 이 논문에서는 학습자가 프로그래밍 이전에 엑셀의 기능을 이용하여 파이겐바움 분기도를 그릴 수 있는 방법을 제시하고, 파이겐바움의 주기에 대해 엑셀을 이용하여 시각적으로 이해할 수 있도록 한다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2005.05a
/
pp.430-435
/
2005
조화가진력이 작용하는 고정경계를 가진 완전원판의 비선형 진동에 대한 응답특성을 연구하였다. 원판의 비대칭모드의 고유진동수 근처에 가진주파수가 작용하는 주공진에서의 응답은 정상파(standing wave)뿐만 아니라 진행파(traveling wave)가 존재한다고 알려져 있다. 주공진 근처의 정상상태 응답곡선에서 최대한 5개의 안정한 응답이 존재하는 것으로 밝혀졌으며, 이들은 1개의 정상파와 4개의 진행파로 나타난다. 이 진행파중 2개는 Hope분기에 의해 안정성을 잃은 후 주기배가운동을 거쳐 혼돈운동에 이르게 된다. Lyaponov 지수를 사용하여 혼돈운동을 정량적으로 평가하였으며, 주평면의 개념을 이용하여 이 혼돈운동의 흡인영역이 Fractal임을 확인하였다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2005.11a
/
pp.696-701
/
2005
조화가진력이 작용하는 고정경계를 가진 완전원판의 비선형 진동에 대한 응답특성을 연구하였다. 원판의 비대칭모드의 고유진동수 근처에 가진주파수가 작용하는 주공진에서의 응답은 정상파(standing wave)뿐만 아니라 진행파(traveling wave)가 존재 한다고 알려져 있다. 주공진 근처의 정상상태 응답곡선에서 최대한 5개의 안정한 응답이 존재하는 것으로 밝혀졌으며, 이들은 1개의 정상파와 4개의 진행파로 나타난다. 이 진행파 중 2개는 가진진동수가 변화함에 따라 Hope분기에 의해 안정성을 잃은 후 주기배가운동을 거쳐 흔돈운동에 이르게 된다. 초기조건에 의해 각각의 끌개(attractor)에 흡인되는 흡인영역의 경계를 주평면의 개념을 통하여 구하였으며, 가진진동수가 변화함에 따라 안정한 해가 혼돈운동에 이르는 과정에 대해 흡인영역의 경계가 변화되는 특성을 관찰하였으며, 흡인영역 경계에 대한 프랙털 차원(fractal dimension)을 계산하였다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2003.05a
/
pp.495-500
/
2003
The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.
Transactions of the Korean Society of Mechanical Engineers B
/
v.24
no.9
/
pp.1210-1218
/
2000
Thermal convection in a horizontal annulus is considered, and the bifurcation phenomena of flows from time-periodic to chaotic convection are numerically investigated. The unsteady two-dimensional streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady flow bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-tripling bifurcation occurs with further increase of the Rayleigh number. Chaotic convection is established after a period-doubling bifurcation. A periodic convection with period 4 appears after the first chaotic convection. At still higher Rayleigh numbers, chaotic flows reappear.
This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.13
no.2
/
pp.88-95
/
2001
Transition to chaotic convection is investigated for natural convection of a fluid with Pr=0.1 in a wide-gap horizontal annuls. The unsteady two-dimensional stream-function-vorticity equation is solved with finite difference method. As the Rayleigh number is increased, the steady 'downward flow' bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-doubling bifurcation occurs. As the Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. The route to chaos shows the Ruelle-Takens-Newhouse scenario. The flow of chaotic regime displays complex coalescence and separation of eddies in the side and lower region of the annulus.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.9A
/
pp.685-696
/
2009
The requirements of the NGA are to provide broader bandwidth, higher splitting ratio, and longer reach than those of the current FTTH. In the TDMA PON accounting for large percentage in the total FTTH, the increase in distance between the OLT and the ONU leads to the increase in propagation delay and in packet delay three times more than the propagation delay. It is because a packet arrived in the ONU is handled through bandwidth request, grant, and transmission. To reduce the increased packet delay, the OLT have to reduce the cycle time. However, it will cause increased overhead and reduced link efficiency. In this paper, we investigate several problems in TDMA PON when the subscriber access network extended to 60 or 100 Km reach as a NGA goal and provide a method that determines an optimal cycle time to satisfy QoS for delay sensitive traffics. In particular, we suggest a variable equalized round trip delay method and a variable cycle time method. It is shown that the former reduces the packet delay and the latter increase the link efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.