본 연구는 주식시장(株式市場)의 이상현상(異狀現象)중의 하나인 요일효과(曜日效果)(day of the week effect)를 전통적인 회귀분석(回歸分析)이 아닌 ARCH 또는 GARCH 모형을 사용하여 조건부(條件附) 평균수익률(기대수익률)(平均收益率(期待收益率)) 뿐만아니라 조건부(條件附) 분산(分散)에도 나타나는지에 대하여 분석하였으며, 규모별(規模別)에 따라 요일효과(曜日效果)에 어떠한 차이가 나타나는지를 분석하였다. 본 연구의 추정결과를 요약하면, 조건부(條件附) 평균수익률(기대수익률)(平均收益率(期待收益率)) 및 조건부(條件附) 분산(分散) 모두에 있어 요일효과(曜日效果)가 뚜렷하게 존재하는 것으로 나타났다. 즉, 조건부(條件附) 평균수익률(平均收益率)에 대해서는 월요일(月曜日)은 부(負)의 효과, 토요일(土曜日)은 정(正)의 효과가 나타났으며, 조건부(條件附) 분산(分散)에 대해서는 월요일(月曜日)은 정(正)의 효과가, 토요일(土曜日)은 부(負)의 효과가 발견되었다. 그러나 한국(韓國)의 주식시장의 본격적인 성장기이면서 주식가격의 등락이 심했던 $86\sim92$년(年)간의 표본기간 동안에는 조건부(條件附) 분산(分散)에 대한 요일효과(曜日效果)는 존재하였으나, 조건부(條件附) 평균수익률(平均收益率)에 대한 요일효과(曜日效果)는 존재하지 않는 것으로 나타났다. 그리고 소형지수(小型指數)가 중(中) 대형지수(大型指數)와는 다른 주가행태를 보이는 것으로 나타났으며, 다음과 같은 몇 가지의 규모별(規模別) 차이(差異)를 보였다. 첫째, 조건부(條件附) 평균수익률(平均收益率)에 대한 분석에서 중(中) 대형지수수익률(大型指數收益率)을 사용하였을 경우에는 요일효과(曜日效果)가 나타난 반면에, 소형(小型) 지수수익률(指數收益率)의 경우에는 화요효과(火曜效果)가 존재하는 것으로 나타났다. 둘째, 조건부(條件附) 분산(分散)에 대한 분석에서 정(正)의 공휴일효과(公休日效果)가 다른 규모별 지수수익률(指數收益率)의 경우에는 나타나지 많았지만 소형(小型) 지수수익률(指數收益率)의 경우에는 존재하는 것으로 나타났다. 세째, 소형(小型) 지수수익률(指數收益率)의 경우 모형 추정후의 정규잔차(定規殘差)(normalized residuals) 및 정규자승잔차(定規自乘殘差)(normalized squared residuals)에 대한 시계열상관(時系列相關) 검정결과 모형의 부적합성(不適合性)이 나타났다. 본 연구는 기존의 기대수익률(期待收益率) 위주의 요일효과(曜日效果) 분석에서 주식수익률(株式收益率)의 분산(分散) 즉, 변동성(變動性)에 촛점을 두어 분석하였으며, 이는 투자자의 정확한 위험측정(危險測定)수단의 제공이라는 면에서 의의(意義)가 있을 것으로 생각된다.
As development of personal devices have made everyday use of internet much easier than before, it is getting generalized to find information and share it through the social media. In particular, communities specialized in each field have become so powerful that they can significantly influence our society. Finally, businesses and governments pay attentions to reflecting their opinions in their strategies. The stock market fluctuates with various factors of society. In order to consider social trends, many studies have tried making use of bigdata analysis on stock market researches as well as traditional approaches using buzz amount. In the example at the top, the studies using text data such as newspaper articles are being published. In this paper, we analyzed the post of 'Paxnet', a securities specialists' site, to supplement the limitation of the news. Based on this, we help researchers analyze the sentiment of investors by generating a domain-specific sentiment lexicon for the stock market.
The purpose of this study is to find out how much the investment effect of convertible bond(CB) is from the perspective of investors and to present efficient investment plans to investors. The research method is to investigate the coupon interest rate, maturity interest rate, conversion price, etc. for CBs. As a result of the study, it was analyzed that CB's investment efficiency was low because the conversion price excess days ratio was only about 1/4 of the conversion date. The conversion day yield was -6.3% and the maturity day yield was -5.2% on average. It was analyzed that the number of stocks with negative conversion day yield was 2.4 times higher than the number of positive stocks and 3.7 times higher than the number of positive stocks with a maturity day yield, so the expected return on equity conversion of CB was low.
Based on daily data from January 4, 2016 to September 27, 2022, the impact of extreme movements of BDI on shipping companies' network connectivity was analyzed using CoVaR network connectivity. The main results and policy implications are as follows. First, according to the copula model results, the Student-t copula was selected as the most suitable model for COSCO, HMM, HRAG, MAERSK, and WAN. EVER was selected as a time-varying Gumbel copula, and YANG was selected as a time-varying rotated-Gumbel copula. Second, as a result of analysis using the TVP-VAR model, the linkage between shipping companies tended to increase when the BDI turned into an extreme risk state. In the comparison of net connectivity, the roles of COSCO and EVER changed. In addition, in the analysis of net pairwise connectivity, it was found that the change in the extreme risk state of BDI also affected the connectivity of shipping companies. In particular, EVER, WAN, and COSCO showed large changes. Taken together, the extreme fluctuations in BDI changed the role of Asian shipping companies, intensifying competition among shipping companies and strengthening risk delivery. It was confirmed that BDI has a great influence on the network connectivity of shipping companies and has an important influence on the stability of the stock market network. Therefore, the results of this study should consider not only the connectivity of shipping companies according to market conditions, but also the connectivity in extreme situations.
This paper aims at predicting the BDI from Jan. to Dec. 2010 using such econometric techniues of the univariate time series as stochastic ARIMA-type models and Hodrick-Prescott filtering technique. The multivariate cause-effect econometric model is not employed for not assuring a higher degree of forecasting accuracy than the univariate variable model. Such a cause-effect econometric model also fails in adjusting itself for the post-sample. This article introduces the two ARIMA models and five Intervention-ARIMA models. The monthly data cover the period January 2000 through December 2009. The out-of-sample forecasting performance is compared between the ARIMA-type models and the random walk model. Forecasting performance is measured by three summary statistics: root mean squared error (RMSE), mean absolute error (MAE) and mean error (ME). The RMSE and MAE indicate that the ARIMA-type models outperform the random walk model And the mean errors for all models are small in magnitude relative to the MAE's, indicating that all models don't have a tendency of overpredicting or underpredicting systematically in forecasting. The pessimistic ex-ante forecasts are expected to be 2,820 at the end of 2010 compared with the optimistic forecasts of 4,230.
Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.
CB(Convertible bond) is mezzanine security that have the characteristics of bonds and stocks. From the perspective of investors, the purpose of the research is to empirically investigate the degree of investment efficiency of CB and to suggest efficient investment plans. The research method investigated the maturity interest rate, conversion price, and conversion date for CB, and then linked it with daily stock price fluctuations after the conversion date to determine the degree of investment efficiency and stock conversion effect of CB. As a result of the study, it was analyzed that the ratio of the conversion price exceeded days was only about 1/4 of the conversion date, so the investment efficiency was low. The conversion day yield was -6.3% on average and the maturity day yield was -5.2% on average, showing a minus return on average, which was calculated differently from investor expectations. It was analyzed that the number of stocks with a minus conversion day is 2.4 times greater than the number of plus stocks and 3.7 times more than the number of plus stocks with a minus maturity return, so the expected return on stock conversion of CB is low. The research contribution was derived from the problem that the expected rate of return of CB is not high, and it is that the investor's point of view when purchasing CB was established.
This study examined the effects institutional block ownership on the stock market liquidity in Korean Stock Market. The two measures of institutional block ownership are used. They are the percentage of a stock owned by institutional blockholder and the number of institutional blockholder that own the stock. This study used the Amihud(2002) illiquidity measure to measure stock market liquidity. The results are as fellows. First, this study showed that the number of institutional blockholder is significantly negatively correlated with the Amihud(2002) illiquidity measure in the analysis which is used the whole data. But we found no a consistent results between the number of institutional blockholder and the Amihud(2002) illiquidity measure in the grouped institutional blockholder's number analysis. This indicates that the effects institutional blockholder on market liquidity is not simple. Second, this study showed that the percentage of a stock owned by institutional blockholder are negatively related with Amihud(2002) illiquidity measure, especially revealed statistically significant in the group 3(11.71%~17.38%) and group 4(7.45%~11.65%). This results suggest that the institutional blockholder have positive effect on the market liquidity in the group 3 and 4. Third, the significance of the percentage of institutional block ownership and the number of institutional block ownership in explaining illiquidity are more showed in the term of the global financial crisis(2008) than the before and the after of the global financial crisis.
According to the equity home bias theory, foreign investors are considered to have less information than native investors. However, as the economy becomes liberalized and overseas economic innovation has a great influence on the local economy, it is possible for foreign investors to invest as informed traders. This study analyzes whether information on trade amount by nationality has specific characteristics. The findings are summarized as follows. First, the increase in trading by foreign investors has negative effects on stock returns. There is no significant difference in these negative effects by nationality. This means that foreign investors show strong herd behavior regardless of nationality. Second, foreigners' investment activities increase stock price volatility, but the impact is not significant. Third, the behavior of foreign investors is still positive feedback. However, there are signs that positive feedback behavior may be changing, especially for funds from the United States and the Cayman Islands. Finally, tax haven zone funds have different investment strategies than other foreign investors. However, Cayman Islands funds, which are estimated to be closely related to Korea, are different from Luxembourg and Ireland funds. These findings undermine the fundamentals of the equity home bias theory.
This study examines the causes of the Asian exchange rate crisis and compares it to the European Monetary System crisis. In 1997, emerging countries in Asia experienced financial crises. Previously in 1992, currencies in the European Monetary System had undergone the same experience. This was followed by Mexico in 1994. The objective of this paper lies in the generation of useful insights from these crises. This research presents a comparison of South Korea, United Kingdom and Mexico, and then compares three different models for prediction. Previous studies of economic crisis focused largely on the manual construction of causal models using linear techniques. However, the weakness of such models stems from the prevalence of nonlinear factors in reality. This paper uses a structural equation model to analyze the causes, followed by a neural network model to circumvent the linear model's weaknesses. The models are examined in the context of predicting exchange rates In this paper, data were quarterly ones, and Consumer Price Index, Gross Domestic Product, Interest Rate, Stock Index, Current Account, Foreign Reserves were independent variables for the prediction. However, time periods of each country's data are different. Lisrel is an emerging method and as such requires a fresh approach to financial crisis prediction model design, along with the flexibility to accommodate unexpected change. This paper indicates the neural network model has the greater prediction performance in Korea, Mexico, and United Kingdom. However, in Korea, the multiple regression shows the better performance. In Mexico, the multiple regression is almost indifferent to the Lisrel. Although Lisrel doesn't show the significant performance, the refined model is expected to show the better result. The structural model in this paper should contain the psychological factor and other invisible areas in the future work. The reason of the low hit ratio is that the alternative model in this paper uses only the financial market data. Thus, we cannot consider the other important part. Korea's hit ratio is lower than that of United Kingdom. So, there must be the other construct that affects the financial market. So does Mexico. However, the United Kingdom's financial market is more influenced and explained by the financial factors than Korea and Mexico.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.