• Title/Summary/Keyword: 좌굴 안정성

Search Result 136, Processing Time 0.025 seconds

In-plane buckling strength of fixed arch ribs subjected vertical distributed loading (수직 등분포 하중을 받는 고정 지점 포물선 아치 리브의 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.439-447
    • /
    • 2005
  • When arch ribs are subjected to vertical loading, they may buckle suddenly towards the in-plane direction. Therefore, the designer should consider their in-plane stability. In this paper, the in-plane elastic and inelastic buckling strength of parabolic, fixed arch ribs subjected to vertical distributed loading were investigated using the finite element method. A finite element model for the snap-through and inelastic behavior of arch ribs was verified using other researchers' test results. The ultimate strength of arch ribs was determined by taking into account their large deformation, material inelasticity, and residual stress. Finally, the finite element analysis results were compared with the EC3 design code.

The Study on the Effect of the Aspect Ratio and Number of Spots on the Compressive Buckling Load of two Rectangular Plates Spot-Welded by FEM (점용접된 두 사각평판의 형상비 및 용접점수가 압축좌굴하중에 미치는 영향의 유한요소해석에 의한 연구)

  • Han, Geun-Jo;Jeon, Hyung-Yong;Lee, Hyoun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.191-196
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive buckling load is studied with respect to the thickness, aspect ratio of plates, number of welding spots. buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in tow directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.25 and that the effect of number of welding spots in transverse direction was large than that in longitudinal direction.

  • PDF

Sensitivity of the Continuous Welded Rail and the Fastener on the Track Stability (궤도 안정성에 대한 장대레일과 체결구의 민감도)

  • Han, Sang Yun;Park, Nam Hoi;Lim, Nam Hyoung;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.719-726
    • /
    • 2006
  • The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. Therefore, the use of the CWR track has increased consistently in the worldwide. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress in the summer. Among many CWR parameters, the influence of the sectional properties of the rail was investigated on the stability of CWR track in this study. Also, the sensitivity of the broken fastener and the stiffness of the fastener system such as the translational and rotational stiffness was investigated.

Mechanical Characteristics of Laminated Rubber Bearings for Seismic Isolation (면진용 적층고무베어링의 기계적 역학특성)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.79-89
    • /
    • 1997
  • The objective of this paper is to investigate the mechanical characteristics of the laminated rubber bearings (LRBs) for the seismic isolation. The evaluations of the proposed equations of the LRB horizontal stiffness are carried out and these equations are extended to the visco-elastic problems to investigate the damping amplifications of LRBs. The stability evaluation of LRBs is also performed. For investigation of the dynamic characteristics of LRBs, the horizontal stiffness equations of the LRBs considering the P-delta effects are applied to the modeling of a seismically isolated structure and the earthquake response time history analyses are carried out. From this research, the proposed simple equation of the horizontal stiffness of LRB is so useful for the design loads and easily extended to the visco-elastic problems. Through the stability evaluation of LRB, the increasing ratio of the total rubber thickness of the LRB severely decrecises the bucking load than the increasing ratio of unit rubber thickness. From the comparison of the dynamic shear deflection of LRB, the analysis results are in good agreement with those of the experiments.

  • PDF

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges (기하형상에 따른 강사장교의 안정성에 관한 연구)

  • Kim, Seung-Jun;Han, Seung-Ryong;Kim, Jong-Min;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.13-27
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.

Experimental Study on the Behavior of Brace with Elasto-Plastic Hysteretic damper (탄소성 이력 댐퍼가 부착된 브레이스의 거동에 관한 실험적 연구)

  • Oh, Sang Hoon;Ryu, Hong Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.617-625
    • /
    • 2005
  • The brace is often used to resist lateral force such as that exerted by an earthquake. Because of buckling at bifurcation load, the brace shows unstable hysteretic characteristics in the plastic zone. Therefore, in this study, the brace with damper that consists of slit plates were suggested on the purpose of preventing buckling and increasing plastic deformation capacity. The experimental results regarding the brace member were analyzed and the feasibility was also examined.

Stability of Continuous Welded Rail Track under Thermal Load (온도하중을 고려한 장대레일 궤도의 안정성 해석)

  • Kang, Young Jong;Lim, Nam Hyoung;Shin, Jeong Ryol;Yang, Jae Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.281-290
    • /
    • 1999
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads ana speeds by improving rolling, welding, and fastening technology. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method. Rail element with a total of 14 degrees of freedom is used. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented.

  • PDF

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Evaluation of Buckling Strength of Non-structured Plates by Using the Deformation Energy (변형에너지에 기반한 비정형 판부재의 좌굴강도 평가기법)

  • Zi, Goangseup;Kim, Hong-hyun;Ahn, Jin-young;Oh, Min-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.102-113
    • /
    • 2017
  • A new index for the buckling strength of non-structured plates is proposed. The external work or the deformation energy caused by the external loads or the boundary displacement controled by a load parameter is calculated along an equilibrium path of the member under consideration. If the second variation of the energy with respect to the parameter loses its positiveness, it defined as the limit of the stability. In contrast to the current method given in codes where the stability limit is evaluated by using only representative internal forces, the evaluation of the stability limit is always consistent even with the change of the distribution of the internal forces on the boundary. If the elasticity is concerned, the result from this proposed approach becomes identical to that from the classical methods.