Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges

기하형상에 따른 강사장교의 안정성에 관한 연구

  • 김승준 (고려대학교 공학기술연구소) ;
  • 한승룡 (고려대학교 건축사회환경공학과) ;
  • 김종민 (고려대학교 건축사회환경공학과) ;
  • 조선규 (서울과학기술대학교 건설공학부) ;
  • 강영종 (고려대학교 건축사회환경공학부)
  • Received : 2009.12.02
  • Accepted : 2011.02.14
  • Published : 2011.02.28

Abstract

This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.

본 연구에서는 기하학적 비선형 해석을 통해 완성계 사장교의 주요한 좌굴 거동 특성을 규명하였다. 본 해석 연구에서는 케이블의 자중에 의한 새그효과, 주탑 및 거더의 보-기둥 효과, 그리고 대변위 효과 등의 주요한 기하학적 비선형성이 직접적인 비선형 해석을 통해 고려되었다. 주탑과 거더는 비선형 프레임 요소로 모델링 되었고, 케이블은 비선형 등가 트러스 요소로 모델링 되었다. 차량하중으로 가정된 활하중이 고려되었는데, 활하중 해석 전에 고정하중을 합리적으로 고려하기 위해 초기 형상 해석이 수행되었다. 작용하는 활하중 형태에 따른 주요한 비선형 반응을 케이블 배치 형식에 따라 비교 하였고, 이 후 좌굴 안정성에 큰 영향을 미치는 활하중 형태에 대해 케이블의 배치 형식, 주탑과 거더 간 강성비, 케이블의 단면적, 케이블의 단수 등의 기하학적 특성이 좌굴 모드 및 임계 하중 계수의 변화에 미치는 영향을 규명하였다.

Keywords

References

  1. 건설교통부(2005) 도로교설계기준.
  2. 경용수, 김문영, 장승필(2005) 비탄성좌굴 고유치해석법을 이용한 케이블 지지교량의 유효좌굴길이 산정, 대한토목학회논문집, 대한토목학회, 제25권, 제4A호, pp.627-636.
  3. 김문영, 경용수, 이준석(2003) 사장교의 개선된 초기형상 해석법, 한국강구조학회 논문집, 한국강구조학회, 제15권, 제2호, pp.175-185.
  4. 김선훈, 송명관, 김경호(2005) 사장교의 구조해석을 위한 개선된 3차원 유한요소해석모델, 대한토목학회 논문집, 대한토목학회, 제25권, 제1A호, pp.241-252.
  5. 송원근, 김승억, 마상수(2005) 비선형 해석을 이용한 강사장교의 초기형상 결정, 대한토목학회 논문집, 대한토목학회, 제25권, 제1A호, pp.1-7.
  6. 윤군진, 이완수(2001) 사장교의 정적 비선형 해석과 초기형상 결정해석, 대한토목학회 논문집, 대한토목학회, 제21권, 제1A호, pp.165-177.
  7. 최동호, 유훈, 하동현(2005), 비탄성 좌굴해석을 통한 사장교 거더와 주탑의 안정성 검토, 대한토목학회 논문집, 대한토목학회, 제25권, 제6A호, pp.1113-1125.
  8. Bathe, K.J. (1996) Finite Element Procedures, Prentice-Hall, Inc, USA.
  9. Crivelli, L.A. (1991) A Total-Lagrangian Beam Element for Analysis of Nonlinear Space Structures, Ph.D. Dissertation, University of Coloradoat Bourder.
  10. Ernst, H.J. (1965) Der E-Modul von Seilen unter Berucksichtigung des Durchanges, Der Bauingenieur, Vol.40, pp.52-55.
  11. Gimsing, N.J. (1983) Cable Suppored Bridges Concept & Design 2nd Edition, John Wiley & Sons Ltd., England.
  12. Kim, S. (2009) Ultimate Analysis of Steel Cable-stayed Bridges, Ph.D.Dissertation, Korea University.
  13. Shu, H.S.and Wang, Y.C. (2001) Stability Analysis of Box-Girder Cable-Stayed Bridges, Journal of Bridge Engineering, Vol.6, No.1, pp.63-68. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(63)
  14. Tang, C.C., Shu, H.S., and Wang, Y.C. (2001) Stability Analysis of Steel Cable-stayed Bridge, Structural Engineering and Mechanics, Vol.11, No.1, pp.35-48. https://doi.org/10.12989/sem.2001.11.1.035
  15. Wang, P.H., Tseng, T.C., and Yang, C.G. (1993) Initial Shape of Cable Stayed Bridge, Computers & Structures, Vol.47, No.1, pp.111-123. https://doi.org/10.1016/0045-7949(93)90284-K
  16. Wang, P.H.and Yang, C.G. (1996) Parametric Study on Cable Stayed Bridges, Computers & Structures, Vol.60, No.2, pp.243-260. https://doi.org/10.1016/0045-7949(95)00382-7
  17. Williams, F.W. (1964) An Approach to the Nonlinear Behavior of the Members of a Rigid Jointed Plane Framework with Finite Deflections Quart. J. Mech. and Applied Math, Vol.17, pp.451-469. https://doi.org/10.1093/qjmam/17.4.451
  18. Yang, Y.B.and Kuo, S.R. (1994) Theory and Analysis of Nonlinear Framed Structures, Prentice-Hall, Inc, Singapore.