• Title/Summary/Keyword: 조력발전기

Search Result 26, Processing Time 0.018 seconds

A Numerical Study on the Application of the Ocean Current Power Parks with a Tidal Power Plant (조력발전소와 연계한 해류발전단지의 활용에 대한 유동해석 연구)

  • Lee, Seung-Ho;Lee, Sang-Hyuk;Jang, Kyung-Soo;Lee, Jung-Eun;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.38-43
    • /
    • 2009
  • The Shiwhaho is an artificial lake located in Yellow sea of Korea where the ocean tidal current is significantly strong, and the tidal power plant is currently being under construction to generate electric power from the ocean tidal current. In addition to the tidal power plant under construction, an ocean current power park was proposed to maximize the power generation by utilizing the ocean current generated by the tidal power plant. To evaluate the feasibility of such combined power plant, the flow characteristics in the ocean current power parks connected with the tidal power plants were investigated numerically in the present study. When two different type of generations are operating together as a system, their interference may occur, which affects their efficiency. Therefore, the minimum distances between the tidal power plants and the ocean current power generators are studied in the present study to minimize such interference. The feasible region to generate power around the Shiwha tide embankment is also predicted by considering predicted ocean current speed distribution. Various arrangements of the ocean current generators are examined and an optimal arrangement is also discussed.

A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant (조력발전용 수차발전기의 기동·정지시스템에 관한 연구)

  • Oh, Min-Hwan;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

Development of Start·Stop Control System at Water Turbine Generator for Tidal Power Plant (조력발전소를 위한 수차발전기의 기동·정지 제어시스템 개발)

  • Cho, Byong-Og;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • Recently, tidal power generation has gained much attention. South Korea's tidal power generation systems were imported from abroad by turnkey type and have being operated. Therefore, for efficient operation and technological independence of a tidal power system, development of core technology is required. This paper deals with the start stop control system of water turbine generator in the tidal power plant, as one of our development project results. Using the SCADA system, the status and operations of water turbine generator in the tidal power plant, as well as simulation for calculation of maximum power were carried out. A small model type of start stop control device was also developed. In addition, the control system in Sihwa tidal power plant was modeled, and the results obtained by the dynamic simulation were given in graphics by 2D simulator.

두만강지역개발계획(RADP)에 관련된 동북아시아 지역 전력계통의 연계 및 안전성 강화방안

  • 윤갑구
    • Proceedings of the Korean Professional Engineer Association Conference
    • /
    • 1996.12a
    • /
    • pp.76-102
    • /
    • 1996
  • 북한은 전력부족난과 전기품질의 저하로 인하여 주요 생산기업에 지장을 주고 있으며, 노후 발전소의 성능저하도 함께 진행되고 있는 것으로 추정된다. 이에 대한 적절한 대책이 없는 한 그 상황은 더욱 악화될 전망이다. 한반도 에너지 개발기구(KEDO)가 추진하고 있는 경수로 원자력 발전기가 6~7년 후에 준공된다고 해도 이처럼 불안정한 전력계통에 병입되어 원활한 운전이 가능할런지 기대하기 곤란하다. 이러한 실정에서 \circled1 전력부족으로 주파수가 저하될 때 우선 순위가 낮은 부하를 제한하는 자동 부하제한 방식을 포함한 자동 주파수 제어 계통개선 \circled2 기존발전소 성능과 이용을 향상을 위한 재가동(Repowering) 등의 리 엔지니어링 \circled3 가스터빈 복합화력과 열병합발전(Co-generation) 등과 같이 건설기간이 짧고 비용이 적게 들며 송전 설비 건설도 불필요한 분산형 전원의 건설 \circled4 수력발전소와 조력발전소의 건설 \circled5 양수발전 등 전력에너지 저장설비의 개발 \circled6 송전전압격상과 배전방식개선 및 종합전력정보시스템 구축 \circled7 남ㆍ북한 전력계통 내지는 동북아시아 전력계통을 연계하는 평화망사업(Peace Network Project)등의 추진이 경수로 사업에 선행되어야 한다. 특히 러시아, 중국, 한국, 일본의 발전 에너지원 분포와 년간 부하곡선을 고려할 때 동북아시아 전력계통의 연계는 관련국 상호간에 에너지 환경과 경제적 측면에서 상당한 이득과 안정성을 강화해 줄 것이며, 기술발전과 평화공존에 크게 기여 할 것이다. 이를 위하여 관련국의 전력계통연계 전문가들이 참여하는 남\ulcorner북한전력 계통연계연합회(Co-Pia ; Co-rea Power Systems Interconnection Association)와 동북아지역전력 계통연합회(Near Pia=North-Eastern Asia Region Power Systems Interconnection Association)의 구성을 제안하는 바이다. 주요용어(Key Words): 자동주파수 제어(AFC), 리엔지니어링(Re-Engineering), 분산형 전원(Dispersed Generation System), 전력저장(Power Storage), 부하조절기(Load Conditioner), 수요관리(DSM) 연계(Interconnection), 인터시스템(Intersystem), 통합자원계획(IRP), 안전성 강화(Security Enhancement), 전력시장개방(Electricity Free Maket), 통일비용(Unification Expense, Unification Cost), 남ㆍ북한전력계통연계연합회(Co-Pia), 동북아지역전력 계통연계연합회(Nea,-Pia).

  • PDF

A Study on the Performance of an 100 kW Class Tidal Current Turbine (100 kW급 조류발전용 터빈의 성능에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo;Choi, Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • As the problems of global warming are brought up recently, many skillful solutions for developing new renewable energy are suggested. One of the most remarkable things is ocean energy. Korea has abundant ocean energy resources owing to geographical characteristics surrounded by sea on three sides, thus the technology of commercialization about tidal current power, wave power is demanded. Especially, Tidal energy conversion system is a means of maintaining environment naturally. Tidal current generation is a form to produce electricity by installing rotors, generators to convert a horizontal flow generated by tidal current into rotating movement. According to rotor direction, a tidal current turbine is largely distinguished between horizontal and vertical axis shape. Power capacity depends on the section size crossing a rotor and tidal current speed. We therefore investigated three dimensional flow analysis and performance evaluation using commercial ANSYS-CFX code for an 100 kW class horizontal axis turbine for low water level. Then We also studied three dimensional flow characteristics of a rotating rotor and blade surface streamlines around a rotor. As a result, We found that torque increased with TSR, the maximum torque occurred at TSR 3.77 and torque decreased even though TSR increased. Moreover we could get power coefficient 0.38 at designed flow velocity.