• Title/Summary/Keyword: 조건부 자기회귀분석법

Search Result 5, Processing Time 0.017 seconds

Forecasting of Pine-Mushroom Yield Using the Conditional Autoregressive Model (조건부 자기회귀모형을 이용한 송이버섯 생산량 예측)

  • 이진희;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.307-320
    • /
    • 2000
  • It has been studied to find relationships between pine-mushroom yield and climatic factors. Recently, Hyun-Park, Key-I! shin and Hyun-Joong Kim(1998) investigated relationships between pine-mushroom yield and climatic factors by autoregression model. In this paper, to improve the forecast we suggest the conditional autoregression model using probability of existing pine-mushroom production.

  • PDF

Bayesian analysis of directional conditionally autoregressive models (방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법)

  • Kyung, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1133-1146
    • /
    • 2016
  • Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

시간의 흐름에 따른 무조건부 주가분산과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • 주식 수익률이 정상적 과정이 아니라 비정상적 과정에 의해서 생성되고 있다는 사실이 여러 실증 분석에서 제시되고 있다. 시계열의 평균이 시간의 흐름에 따라 변하면 이 시계열은 비정상적 과정에 의하여 생성된다. 시간의 흐름에 따라 평균이 변하는 비정상 시계열은 단위근과 공적분에 의하여 시계열의 운동을 모형화하고 있다. 한편 시계열의 비정상성은 분산이 시간의 흐름에 따라 변할 때에도 발생한다. 시간의 흐름에 따라 무조건부 분산은 변하지 않고 있지만 이용 가능한 정보 집합을 조건으로 하는 조건부 분산이 변하는 경우도 있다. 이 같은 성질을 가진 주가 시계열은 자기회귀 조건부 이분산(ARCH) 계통의 과정으로 모형화하고 있다. 그러나 무조건부 분산이 시간의 흐름에 따라 변하면 ARCH 계통은 중대한 모형정립과오(misspecification)에 직면하게 된다. 따라서 본 논문은 무조건부 분산이 시간의 흐름에 따라 변할 때 자기 회귀 과정의 모수를 추정하는 방법을 검토하고, 이 방법을 한국 종합주가 지수에 적용하여 자기회귀 과정의 모수를 추정하였다. 이 방법에 의하여 추정된 2계 자기회귀 과정의 모수값 중 상수항과 제1계 항의 계수는 통상 최소자승법에 의한 값과 유사하다. 그러나 제2계 항 모수의 값은 양자가 상당히 다르다. 최소자승에 의한 제2계 값이 과대 추정되고 있다.

  • PDF

Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models (벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정)

  • Lee, Myeongwoo;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • We consider the wild bootstrap Ljung-Box (LB) test for autocorrelation in residuals of fitted multivariate time series models. The asymptotic chi-square distribution under the IID assumption is traditionally used for the LB test; however, size distortion tends to occur in the usage of the LB test, due to the conditional heteroskedasticity of financial time series. In order to overcome such defects, we propose the wild bootstrap LB test for autocorrelation in residuals of fitted vector autoregressive and error correction models. The simulation study and real data analysis are conducted for finite sample performance.

Bayesian spatial analysis of obesity proportion data (비만율 자료에 대한 베이지안 공간 분석)

  • Choi, Jungsoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1203-1214
    • /
    • 2016
  • Obesity is a risk factor for various diseases as well as itself a disease and associated with socioeconomic factors. The obesity proportion has been increasing in Korea over about 15 years so that investigation of the socioeconomic factors related with obesity is important in terms of preventation of obesity. In particular, the association between obesity and socioeconomic status varies with gender and has spatial dependency. In the paper, we estimate the effects of socioeconomic factors on obesity proportion by gender, considering the spatial correlation. Here, a conditional autoregressive model under the Bayesian framework is used in order to take into account the spatial dependency. For the real applicaiton, we use the obestiy proportion dataset at 25 districts of Seoul in 2010. We compare the proposed spatial model with a non-spatial model in terms of the goodness-of-fit and prediction measures so the spatial model performs well.