References
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society B, 36, 192-236.
- Besag, J. (1975). Spatial analysis of non-lattice data. The Statistician, 24, 179-195. https://doi.org/10.2307/2987782
- Besag, J and Kooperberg, C. (1995). On conditional and intrinsic autoregression. Biometrika, 82, 733-746.
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9-25.
- Cliff, A. D. and Ord, J. K. (1981). Spatial processes: Models & applications, Pion Limited, London.
- Cressie, N. (1993). Statistics for spatial data, Wiley, New York.
- Cressie, N. and Chan, N. H. (1989). Spatial modeling of regional variables. Journal of the American Statistical Association, 84, 393-401. https://doi.org/10.1080/01621459.1989.10478783
- Griffith, D. A. and Csillag, F. (1993). Exploring relationships between semi-variogram and spatial autoregressive models. Papers in Regional Science, 72, 283-295. https://doi.org/10.1007/BF01434277
- Ha, J. and Kim, S. (2015). Comparisons of the corporate credit rating model power under various conditions. Journal of the Korean Data & Information Science Society, 26, 1207-1216. https://doi.org/10.7465/jkdi.2015.26.6.1207
- Hrafnkelsson, B. and Cressie, N. (2003). Hierarchical modeling of count data with application to nuclear fall-out. Journal of Environmental and Ecological Statistics, 10, 179-200. https://doi.org/10.1023/A:1023674107629
- Kyung, M. and Ghosh, S. K. (2009). Bayesian inference for directional conditionally autoregressive models. Bayesian Analysis, 4, 675-706. https://doi.org/10.1214/09-BA425
- Kyung, M. and Ghosh, S. K. (2010). Maximum likelihood estimation for directional conditionally autoregressive models. Journal of Statistical Planning and Inference, 140, 3160-3179. https://doi.org/10.1016/j.jspi.2010.04.012
- Lee, D. (2013). CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors. Journal of Statistical Software, 55, 1-24.
- Lee, W. J. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
- Lindgren, F., Rue, H. and Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society B, 73, 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
- Miller, H. J. (2004). Tobler's first law and spatial analysis. Annals of the Association of American Geographers, 94, 284-295. https://doi.org/10.1111/j.1467-8306.2004.09402005.x
- Reich, B. J., Hodges, J. S. and Carlin, B. P. (2007). Spatial analyses of periodontal data using conditionally autoregressive priors having two classes of neighbor relations. Journal of the American Statistical Association, 102, 44-55. https://doi.org/10.1198/016214506000000753
- Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to Gaussian fields. Scandinavian Journal of Statistics, 29, 31-49. https://doi.org/10.1111/1467-9469.00058
- Schabenberger, O. and Gotaway, C. A. (2005). Statistical methods for spatial data analysis, Chapman & Hall/CRC, Boca Raton.
- Spiegelhalter, D. J., Best, N. J., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Song, H. R., Fuentes, M. and Ghosh, S. (2008). A comparative study of Gaussian geostatistical models and Gaussian Markov random field models. Journal of Multivariate Analysis, 99, 1681-1697. https://doi.org/10.1016/j.jmva.2008.01.012
- Sturtz S., Ligges U. and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software, 12, 1-16.
- van der Linde, A., Witzko, K.-H. and Jockel, K.-H. (1995). Spatio-temporal anlaysis of mortality using spline. Biometrics, 4, 1352-1360.
- Wahba, G. (1977). Practical approximate solutions to linear operator equations when the data are noisy. SIAM Journal on Numerical Analysis, 14, 651-667. https://doi.org/10.1137/0714044
- White, G. and Ghosh, S. K. (2008). A stochastic neighborhood conditional auto-regressive model for spatial data. Computational Statistics and Data Analysis, 53, 3033-3046.