DOI QR코드

DOI QR Code

Bayesian analysis of directional conditionally autoregressive models

방향성 공간적 조건부 자기회귀 모형의 베이즈 분석 방법

  • Kyung, Minjung (Department of Statistics, Duksung Women's University)
  • 경민정 (덕성여자대학교 정보통계학과)
  • Received : 2016.06.17
  • Accepted : 2016.07.11
  • Published : 2016.09.30

Abstract

Counts or averages over arbitrary regions are often analyzed using conditionally autoregressive (CAR) models. The spatial neighborhoods within CAR model are generally formed using only the inter-distance or boundaries between the sub-regions. Kyung and Ghosh (2009) proposed a new class of models to accommodate spatial variations that may depend on directions, using different weights given to neighbors in different directions. The proposed model, directional conditionally autoregressive (DCAR) model, generalized the usual CAR model by accounting for spatial anisotropy. Bayesian inference method is discussed based on efficient Markov chain Monte Carlo (MCMC) sampling of the posterior distributions of the parameters. The method is illustrated using a data set of median property prices across Greater Glasgow, Scotland, in 2008.

공간통계 방법 중 지역에 대한 어떤 집합체 자료나 평균자료들을 분석하는데 일반적으로 공간적 자기회귀 (conditionally autoregressive) 모형을 사용한다. 공간적 자기회귀 모형에 정의되는 공간적 이웃 소지역들은 중점의 거리나 근접성으로 정의된다. Kyung과 Ghosh (2009)는 방향에 따라서 이웃간 자기상관성의 크기가 다른 확장된 공간 모형을 제시하였다. 제안된 방향적 조건부 자기회귀 (directional conditionally autoregressive) 모형은 고유 이방성을 모형화하여 기존의 CAR과정을 일반화한다. 제시한 방향적 조건부 자기회귀모형의 모수추정으로 마르코프 체인 몬테 카를로 방법을 기반으로 한 베이즈 추정법을 제시한다. 제시한 모형을 스코틀랜드 그레이터 글래스고우의 로그변환된 부동산 가격에 적용하여 조건부 자기회귀모형과 비교하였다.

Keywords

References

  1. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society B, 36, 192-236.
  2. Besag, J. (1975). Spatial analysis of non-lattice data. The Statistician, 24, 179-195. https://doi.org/10.2307/2987782
  3. Besag, J and Kooperberg, C. (1995). On conditional and intrinsic autoregression. Biometrika, 82, 733-746.
  4. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 9-25.
  5. Cliff, A. D. and Ord, J. K. (1981). Spatial processes: Models & applications, Pion Limited, London.
  6. Cressie, N. (1993). Statistics for spatial data, Wiley, New York.
  7. Cressie, N. and Chan, N. H. (1989). Spatial modeling of regional variables. Journal of the American Statistical Association, 84, 393-401. https://doi.org/10.1080/01621459.1989.10478783
  8. Griffith, D. A. and Csillag, F. (1993). Exploring relationships between semi-variogram and spatial autoregressive models. Papers in Regional Science, 72, 283-295. https://doi.org/10.1007/BF01434277
  9. Ha, J. and Kim, S. (2015). Comparisons of the corporate credit rating model power under various conditions. Journal of the Korean Data & Information Science Society, 26, 1207-1216. https://doi.org/10.7465/jkdi.2015.26.6.1207
  10. Hrafnkelsson, B. and Cressie, N. (2003). Hierarchical modeling of count data with application to nuclear fall-out. Journal of Environmental and Ecological Statistics, 10, 179-200. https://doi.org/10.1023/A:1023674107629
  11. Kyung, M. and Ghosh, S. K. (2009). Bayesian inference for directional conditionally autoregressive models. Bayesian Analysis, 4, 675-706. https://doi.org/10.1214/09-BA425
  12. Kyung, M. and Ghosh, S. K. (2010). Maximum likelihood estimation for directional conditionally autoregressive models. Journal of Statistical Planning and Inference, 140, 3160-3179. https://doi.org/10.1016/j.jspi.2010.04.012
  13. Lee, D. (2013). CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors. Journal of Statistical Software, 55, 1-24.
  14. Lee, W. J. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
  15. Lindgren, F., Rue, H. and Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society B, 73, 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
  16. Miller, H. J. (2004). Tobler's first law and spatial analysis. Annals of the Association of American Geographers, 94, 284-295. https://doi.org/10.1111/j.1467-8306.2004.09402005.x
  17. Reich, B. J., Hodges, J. S. and Carlin, B. P. (2007). Spatial analyses of periodontal data using conditionally autoregressive priors having two classes of neighbor relations. Journal of the American Statistical Association, 102, 44-55. https://doi.org/10.1198/016214506000000753
  18. Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to Gaussian fields. Scandinavian Journal of Statistics, 29, 31-49. https://doi.org/10.1111/1467-9469.00058
  19. Schabenberger, O. and Gotaway, C. A. (2005). Statistical methods for spatial data analysis, Chapman & Hall/CRC, Boca Raton.
  20. Spiegelhalter, D. J., Best, N. J., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
  21. Song, H. R., Fuentes, M. and Ghosh, S. (2008). A comparative study of Gaussian geostatistical models and Gaussian Markov random field models. Journal of Multivariate Analysis, 99, 1681-1697. https://doi.org/10.1016/j.jmva.2008.01.012
  22. Sturtz S., Ligges U. and Gelman, A. (2005). R2WinBUGS: A package for running WinBUGS from R. Journal of Statistical Software, 12, 1-16.
  23. van der Linde, A., Witzko, K.-H. and Jockel, K.-H. (1995). Spatio-temporal anlaysis of mortality using spline. Biometrics, 4, 1352-1360.
  24. Wahba, G. (1977). Practical approximate solutions to linear operator equations when the data are noisy. SIAM Journal on Numerical Analysis, 14, 651-667. https://doi.org/10.1137/0714044
  25. White, G. and Ghosh, S. K. (2008). A stochastic neighborhood conditional auto-regressive model for spatial data. Computational Statistics and Data Analysis, 53, 3033-3046.