References
- An, D., Han, J., Yoon, T., Kim, C. and Noh, M. (2015). Small area estimations for disease mapping by using spatial model. Journal of the Korean Data & Information Science Society, 26, 101-109. https://doi.org/10.7465/jkdi.2015.26.1.101
- Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data, Chapman & Hall, New York.
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society B, 36, 192-236.
- Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika, 51, 481-483. https://doi.org/10.1093/biomet/51.3-4.481
- Clifford, P. (1990). Markov random fields in statistics. In Disorder in Physical Systems. Oxford University Press, Oxford, 20-32.
- Cressie, N. (1993). Statistics for spatial data, John Wiley & Sons, New York.
- Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515-533. https://doi.org/10.1214/06-BA117A
- Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
- Kang, H. T., Lee, H. R., Lee, Y. J., Linton, J. A. and Shim, J. Y. (2013). Relationship between employment status and obesity in a Korean elderly population, based on the 2007-2009 Korean National Health and Nutrition Examination Survey (KNHANES). Archives of gerontology and geriatrics, 57, 54-59. https://doi.org/10.1016/j.archger.2013.02.004
- Kang, J. H, Jeong, B. G., Cho, Y. G., Song, H. R. and Kim, K. A. (2011). Socioeconomic costs of overweight and obesity in Korean adults. Journal of Korean Medical Science, 26, 1533-1540. https://doi.org/10.3346/jkms.2011.26.12.1533
- Lee, W. J. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
- McLaren, L. (2007). Socioeconomic status and obesity. Epidemiologic reviews, 29, 29-48. https://doi.org/10.1093/epirev/mxm001
- Ogden, C. L., Lamb, M. M., Carroll, M. D. and Flegal, K. M. (2010). Obesity and socioeconomic status in adults: United states, 2005-2008. NCHS data brief, 50, 1-8.
- Plummer, M., Best, N. G., Cowles, K. and Vines, K. (2006). coda: Convergence Diagnosis and Output Analysis for MCMC. R News, 6, 7-11.
- Sobal, J. and Stunkard, A. J. (1989). Socioeconomic status and obesity: A review of the literature. Psychological bulletin, 105, 260-275. https://doi.org/10.1037/0033-2909.105.2.260
- Spiegelhalter, D. J., Best, N., Carlin, B. P. and van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Stern, H. S. and Cressie, N. (1999). Inference for extremes in disease mapping. In Disease Mapping and Risk Assessment for Public Health, edited by A. B. Lawson, A. Biggeri, D. Boehning, E. Lesaffre, J. F. Viel, and R. Bertolline, 63-84, Wiley, New York.
- World Health Organization. (2000). Obesity: Preventing and managing the global epidemic (No. 894), World Health Organization, Geneva.
- Yoo, S., Cho, H. J. and Khang, Y. H. (2010). General and abdominal obesity in South Korea, 1998-2007: Gender and socioeconomic differences. Preventive medicine, 51, 460-465. https://doi.org/10.1016/j.ypmed.2010.10.004