• 제목/요약/키워드: 조건부분포

검색결과 138건 처리시간 0.032초

이변량 Laplace 분포와 응용

  • 홍성식;홍종선
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.127-130
    • /
    • 2003
  • 주변분포가 Laplace 분포인 세 가지 형태의 이변량 Laplace 분포를 연구한다. 각각의 이변량 Laplace 분포의 확률밀도함수와 누적분포함수를 유도하고, 분포의 그래프를 그려봄으로써 분포의 형태를 알아본다. 조건부 적률을 정리하여 조건부 첨도와 조건부 왜도를 구하고 분포의 성질을 파악한다. 상관계수를 구하여 다른 이변량 분포의 상관계수와 비교해 보았다. 그리고 정의된 분포함수를 응용하여 이변량 Laplace 분포를 따르는 난수벡터를 발생하는 알고리즘을 제안하였으며, 생성된 난수벡터의 표본으로부터 구한 표본평균과 중앙값의 분산-공분산 행렬식을 구하고 이변량 정규분포에 대응하는 행렬식과 비교 토론하였다.

  • PDF

가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정 (Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula)

  • 곽민정
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.203-213
    • /
    • 2017
  • 우리는 이변량 경시적 자료의 조건부 결합 분포를 추정하기 위하여 회귀 모형과 코플라 모형을 연구하였다. 주변 분포의 추정을 위하여 시변 변환 모형을 고려하였고, 이변량 반응변수 각각에 대한 주변 분포를 가우시안 코플라를 이용하여 결합하여 조건부 결합 분포를 추정하였다. 우리가 제안한 모형은 조건부 평균 모형만으로 자료를 설명하기 어려운 경우에 적용될 수 있다. 시변 변환 모형과 가우시안 코플라 모형을 결합한 본 논문의 방법은 반복 측정된 이변량 경시적 자료에 대한 모형화가 용이하며 해석하기 쉬운 장점이 있다. 우리는 본 논문의 방법을 반복 측정된 이변량 콜레스테롤 자료를 분석하는데 적용하여 보았다.

Unbounded Johnson 분포를 이용한 GARCH 수익률 모형의 적용 (GARCH Model with Conditional Return Distribution of Unbounded Johnson)

  • 정승현;오정준;김성곤
    • 응용통계연구
    • /
    • 제25권1호
    • /
    • pp.29-43
    • /
    • 2012
  • 주식, 환율 등과 같은 금융자료의 수익률의 분포는 정규분포에 비해 꼬리가 두껍고, 좌우 비대칭성을 보인다. 조건부수익률이 정규분포를 따른다고 가정한 GARCH 모형을 이용하여 VaR을 추정하였을 때, 이러한 비정규성 때문에 적절한 추정이 이루어지지 않고, VaR을 초과하는 손실의 발생과정에 군집(clustering)현상이 발생하는 문제점이 있다. 이러한 문제를 해결하기 위해, 본 논문에서는 조건부수익률의 분포로 unbounded Johnson 분포를 이용한 GARCH 모형을 이용하여 VaR을 추정한다. 또한, 조건부수익률이 각각 정규분포, Student-t 분포를 따르는 GARCH 모형의 경우와 비교하였다. 초과손실 발생과정 자료를 이용하여 실패율검정과 군집성검정을 통해 조건부수익률 분포로 unbounded-Johnson 분포를 사용하는 방법의 타당성을 살펴보았다. Unbounded Johnson 분포가 조건부수익률 분포로 주어지는 GARCH 모형의 경우는 과소, 과대추정을 하지 않고, 군집현상 또한 발생하지 않아 적절한 추정을 하고 있음을 확인하였다.

조건부 상호정보를 이용한 분류분석에서의 변수선택 (Efficient variable selection method using conditional mutual information)

  • 안치경;김동욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권5호
    • /
    • pp.1079-1094
    • /
    • 2014
  • 상호정보 (mutual information)를 이용한 변수 선택법은 반응변수와 설명변수간의 선형적인 연관성뿐만 아니라 비선형적인 연관성을 감지하며, 설명변수 사이의 연관성도 고려하는 좋은 변수선택 방법이다. 하지만 고차원 자료에서 상호정보를 추정하기가 쉽지 않아 이에 대한 연구가 필요하다. Cai 등 (2009)은 조건부 상호정보를 이용한 전진선택법과 가지치기법을 이용하여 이러한 문제를 해결하였으며, 마이크로어레이 자료와 같은 고차원 자료에서 조건부 상호정보를 이용한 변수 선택법으로 선택된 변수들로 구성된 SVM의 분류 성능이 SVM-RFE 및 기존의 필터링 방법으로 선택된 변수들로 구성된 SVM의 분류 성능보다 뛰어남을 보였다. 하지만 조건부 상호정보를 추정할 때 사용된 Parzen window 방법은 변수의 수가 많아질수록 변수 선택 시간이 길어지는 단점으로 인해 이에 대한 보완이 필요하다. 본 논문에서는 조건부 상호정보 계산 시 필요한 설명변수의 분포를 다변량 정규분포로 가정함으로써 변수선택을 위한 계산시간을 단축시키며 동시에 변수선택의 성능을 향상시키고자 한다. 반면, 설명변수의 분포를 다변량 정규분포로 가정한다는 것은 강한 제약이 될 수 있으므로 이를 완화시킨 Edgeworth 근사를 이용한 조건부 상호정보 기반의 변수 선택법을 제안한다. 실증분석을 통해 본 논문에서 제안한 방법의 효율성을 살펴보았으며, 기존의 조건부 상호정보 기반 변수 선택법에 비해 계산 속도나 분류 성능 면에서 우수함을 보였다.

조건부 합성기법과 레이더 강우자료를 이용한 분포형 강우유출모형 KIMSTORM의 홍수모의 적용성 평가 (The Applicability of KIMSTORM for Flood Simulation Using Conditional Merging Method and Radar Rain Data)

  • 김세훈;정충길;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.136-136
    • /
    • 2017
  • 본 연구의 목적은 이중편파 레이더 강우자료와 현재 실무에서 널이 이용되고 있는 레이더 강우보정 기법 적용에 따른 격자기반 분포형 강우-유출 모형인 KIMSTORM (KIneMatic wave STOrm Runoff Model)을 이용하여 유출해석을 수행하여 보정된 레이더 강우자료를 적용한 분포형 수문모형의 효율성을 검토하는데 있다. 남강댐 유역($2,293km^2$)을 대상으로 2014년 8월 태풍 이벤트(나크리), 2016년 10월 태풍 이벤트(차바)에 대하여 비슬산 레이더 강우자료를 사용하였다. 강우자료의 보정은 21개 지점 강우와 레이더 강우를 이용하여 조건부 합성 보정기법을 이용하였으며, 누적 강우량 그리고 면적 강우량 모두 관측치를 잘 재현함을 확인 할 수 있었다. $R^2$(coefficient of determination), ME (model efficiency), VCI (volume conservation index)를 이용하여 적용성을 평가하였다. 2016년 태풍 차바 이벤트에서의 유출 모형의 보정결과 조건부 합성 보정기법을 적용하기전 $R^2$, ME는 각각 0.75, 0.13으로 나타났고 조건부 합성 보정기법을 적용하였을 경우 각각 0.87, 0.82로 유출량 정확도가 크게 향상됨을 나타냈다. 다양한 국지성 집중호우 이벤트는 레이더 강우자료의 과대 및 과소추정을 유발하는 오차의 원인으로 조건부 합성 보정기법은 이러한 오차를 줄여 강우-유출 모형의 유출분석 결과 비교시 첨두유량 및 정량적인 면에서 실측 유량과 가깝게 모의되는 결과를 나타냈다.

  • PDF

비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정 (Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula)

  • 곽민정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.689-700
    • /
    • 2016
  • 본 논문에서는 이변량 경시적 자료의 조건부 결합 분포를 추정하기 위하여 회귀 모형과 코플라 모형을 연구하였다. 주변 분포의 추정을 위하여 시변 전환 모형을 고려하였고, 이변량 반응변수 각각에 대한 주변 분포를 경험 분포를 이용한 비모수적 코플라를 이용하여 결합하여 조건부 결합 분포를 추정하였다. 주변 분포 모형의 모수 추정치는 추정방정식의 해로 얻어낼 수 있으며 우리가 제안한 모형은 조건부 평균 모형만으로 자료를 설명하기 어려운 경우에 적용될 수 있다. 시변 전환 모형과 비모수적 코플라 모형을 결합한 본 논문의 방법은 반복 측정된 이변량 경시적 자료에 대한 모형화가 모형에 대한 가정에서 비교적 자유로운 장점이 있다. 우리는 본 논문의 방법을 반복 측정된 이변량 콜레스테롤 자료를 분석하는데 적용하여 보았다.

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.

조건부 합성기법을 활용한 미계측유역의 강수 추정 (Estimation of Precipitation in Ungaged Watershed using a Conditional Merging Technique Coupled with Different Interpolation Schemes)

  • 김태정;이동률;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.226-226
    • /
    • 2017
  • 최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 고해상도의 기상레이더 강수자료를 사용한 수공학 분야의 연구가 활발하게 진행되고 있다. 레이더 강수자료를 수문분석에 활용하는 목적은 레이더 강수량이 제공하는 공간분포를 최대한 활용하는데 있다. 기상레이더는 광범위한 영역에 대하여 시공간적으로 연속적인 관측이 가능하므로 지상 강수자료에 비하여 고해상도의 강수자료를 확보하는데 이점이 있다. 본 연구에서는 고해상도의 레이더 강수자료의 공간분포 특성을 유지하면서 지상 강수자료의 양적특성을 유지할 수 있는 조건부 합성기법을 개발하였다. 레이더 강수자료와 지상 강수자료를 조건부 합성하기 위하여 널리 활용되고 있는 Kriging, 역거리 가중법 및 Spline 보간법을 적용하였다. 조건부 합성결과는 지상 강수패턴을 현실성 있게 재현하였다. 추가적으로 미계측 지점으로 간주하여 보간법에 적용되지 않은 강수자료와 조건부 합성기법 결과에 대하여 교차검증을 수행한 결과 조건부 합성기법을 통한 강수정보는 수문분석에 직접적으로 활용될 수 있는 가능성을 확인하였다. 본 연구결과를 향후 초단기 레이더 강수예측기법과 연계하여 수문모형의 입력 자료로 활용한다면 보다 진보된 수문해석이 가능할 것으로 판단된다.

  • PDF

국내금융자산의 시장위험 추정에 있어서 ARCH류 모형의 유용성 평가

  • 유일성
    • 재무관리논총
    • /
    • 제11권1호
    • /
    • pp.157-176
    • /
    • 2005
  • 본 연구는 KOSPI자산 포트폴리오에 대한 VaR를 다양한 ARCH류 모형을 사용하여 추정하고 이들의 예측능력을 평가하였다. 활용된 모형은 우선 기본적인 GARCH(1,1)모형과 레버리지 효과를 감안한 TGARCH모형, 다양한 ARCH모형을 포괄할 수 있는 PGARCH모형, 변동성의 영속성을 고려한 IGARCH모형이 포함되었다. 모형 상호간의 성과비교에 추가하여 ARCH류 모형에서 수익률예측오차의 분포에 따라서 VaR의 예측성과가 얼마나 차이가 발생하는가를 확인하기 위하여 정규분포와 Student-t분포의 성과를 비교하였다. 마지막으로 VaR 추정시에 조건부평균을 무시하는 관례가 어느정도 타당성이 있는지를 확인하기 위하여 1시차 자기회귀과정에 입각한 조건부 평균을 감안한 결과를 검토하였다. ARCH류 모형에서 모형 설명력은 보다 정교한 모형인 TGARCH모형이나 PGARCH모형이 우월하게 나타났지만, VaR의 예측능력 우월성으로 이어지지는 않았다. Student-t분포를 가정한 경우 VaR모형 사후검증성과는 정규분포를 가정한 경우보다 모든 신뢰수준에서 개선되었으며, 조건부평균의 제거는 Student-t분포 가정하에서는 적합하지 않은 것으로 나타났다. ARCH류 모형에서 가장 단순한 형태인 IGARCH모형의 예측성과가 다른 모형들에 비하여 뒤떨어지지 않으며, 더욱 제약된 형태인 RiskMetrics의 EWMA모형이 사후검증에서 우수한 성과를 보여 단순한 모형의 유용성을 확인시켜주고 있다.

  • PDF