• Title/Summary/Keyword: 젤

Search Result 525, Processing Time 0.024 seconds

Effect of the Position of Azobenzene Moiety on the Light-Driven Anisotropic Actuating Behavior of Polyvinylalcohol Polymer Blend Films (아조벤젠 분자의 사슬 내 위치에 따른 고분자 블렌드 박막의 비등방성 광 변형에 관한 연구)

  • Kim, Hyong-Jun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Structural changing materials which can induce the physical deformation of materials are interesting research topics with various potential applications. Particularly, light among many driving mechanisms is a non-contact energy source, hence the light-responsive system can be used where non-destructive, local irradiation, and remote control is needed. Here, a mainchain azobenzene polymer is synthesized and its physical and optical properties are observed and compared to that of a polymer having a light-responsive azobenzene moiety on its side chain. Further dispersion onto polyvinylalcohol hydrogel is made and its dual stability and actuation are observed upon UV-visible light irradiation. Extended azobenzene polymer blend films show an anisotropic light-actuation with non-polarized UV light at room temperature. This physical shape change is quite reversible and occurs at lower temperature than that of any other reported systems including liquid crystalline elastomers. It is successfully demonstrated that the simple physical azobenzene/polymer blending has a very good actuation compared to that of LCEs which need an elaborate chemical design and it can be further used in the areas requiring a dimensional shape change.

The Effect of pH and Temperature on Lysozyme Separation in Ion-exchange Chromatography (이온교환크로마토그래피에서 라이소자임 분리에 미치는 pH와 온도 영향)

  • Ko, Kwan-Young;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.98-105
    • /
    • 2014
  • Lysozyme amounts to 0.3% in egg white and functions as an agent of cell lysis and activator of tissue reconstruction. Ion exchange chromatography is the most useful method of separation among affinity chromatography, ion exchange chromatography, and ultra-filtration. The aim of present study is to find the optimum pH and temperature for the separation of lysozyme in egg white within cation exchange gel filled glass column. And we compared results of experiments with those of simulations. Phosphate buffer was used, and pH and temperature were varied as 5~7 and $25{\sim}40^{\circ}C$ respectively. RP-HPLC was the tool for the retention time identification and quantitative analysis of lysozyme. OriginPro 8 measured the peak area of lysozyme chromatogram and quantified the eluted lysozyme. Largest amount of lysozyme was separated under the conditions of pH 5 and T $25^{\circ}C$.

Synthesis and Characterization of Cellulose-Hybrid Polystyrene Nanoparticles by Using Reactive Hydroxypropyl Methylcellulose Phthalate (반응형 히드록시프로필 메틸셀룰로오스 프탈레이트를 이용한 셀룰로오스 혼성 폴리스티렌 나노입자의 합성 및 특성 분석)

  • Cheong In-Woo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.437-444
    • /
    • 2006
  • Reactive hydroxypropyl methylcellulose phthalate (reactive HPMCP) was synthesized by using a stepwise urethane reaction with isophorone diisocyanate (IPDI) and 2-hydroxyethyl moth acrylate (HEMA). Molecular weight, acid number, and critical micelle concentration (CMC) of the synthesized reactive HPMCP and pristine HPMCP were measured and used as a polymeric surfactant in the emulsion polymerizations of styrene. In the preparation of HPMCP-hybrid poly styrene nanoparticles, 6, 9, 12, 18, and 24 wt% of HPMCPs were introduced, and the maximum rate of polymerization ($R_{p,max}$), the average number of radicals per particle (n), particle size distribution were investigated. In addition, core - shell morphology of the nanoparticles were observed by using TEM and their thermal stabilities were measured by using TGA. Reactive HPMCP showed higher $R_{p,max}$, smaller particle size, larger values of n and gel contents as compared with pristine HPMCP, due to the vinyl groups from HEMA, which can be reacted with styrene oligomers, in the reactive HPMCP.

Organic-Inorganic Nanocomposites of Polystyrene with Polyhedral Oligomeric Silsesquioxane (실세스키옥세인을 사용한 폴리스티렌 나노복합재료)

  • Kim Kyung-Min
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.380-384
    • /
    • 2006
  • Polyhedral oligomeric silsesquioxanes (POSS) were used as starting materials for the preparation of hybrid materials with polystyrene (PS). Optically transparent hybrids were obtained in a wide range of weight ratios when phenyl groups were introduced to each corner of the silsesquioxane. In contrast, as cyclohexyl groups were introduced, the obtained hybrid materials with PS resulted in turbid films. The aromatic (${\pi}-{\pi}$) interaction was confirmed to be a quite effective tool for the synthesis of organic-Inorganic polymer hybrids with POSS. The obtained homogeneous and transparent hybrid films could be dissolved in solvents and East again without any separation. The homogeneity of polymer hybrids with POSS was supported by the result of scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), which demonstrated a nanometer-level integration of PS and POSS.

Preparation and Characteristics of Polyurethane Hybrid Sealant Modified with Polydimethylsiloxane (Polydimethylsiloxnae 변성 Polyurethane Hybrid Sealant의 제조와 그 특성)

  • Kang, Doo-Whan;Park, Seung-Woo
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.488-492
    • /
    • 2011
  • Three isocyanatopropyldimethoxysilylpolydimethylsiloxanes(IDMSi-PDMS) were synthesised from the reaction of isocyanatopropyltrimethoxysilane with monohydroxyl group termainated PDMS having different molecular weight($M_n$=5000, 10000, and 20000). Then PDMS modified polyurethane hybrid elastomer(PSMPH) were prepared from the reaction of IDMSi-PDMS with ${\alpha}$, ${\omega}$-hydroxyl group terminated polyurethane. PSMPH sealant was prepared by compounding PSMPH elastomer with additives such as plasticizer, adhesion promoter, crosslinking agent, vicosity increasing agent, inorganic filler, and catalyst at room temperature under nitrogen atmosphere. The methoxy group in the PSMPH sealant should be crosslinked with the hydroxyl group in the building stone or moisture by typical sol-gel reaction. The adhesive strength of the sealant having PDMS of $M_n$=5000 showed 40.28 kg of maxium load and 20.14 kg of break load. The shrinkage rate of the sealant having PDMS of $M_n$=20000 was 5.7% as the best result. Also, their skin over time, slump, oil content after 8 days under oil soaked paper and alkaline resistance characteristics show good results.

Study on the Improvement of Physicochemical Properties of PEDOT-Metal Oxide Composite Thin Film by Vapor Phase Polymerization (기상중합법으로 제조된 Poly(3,4-ethylenedioxythiophene)(PEDOT)-금속산화물 복합 박막의 물리화학적 물성 향상에 관한 연구)

  • Nam, Mi-Rae;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.599-605
    • /
    • 2012
  • The physicochemical properties such as surface hardness, solvent mechanical wear resistance, and resistance to scratch properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin film prepared by vapor phase polymerization (VPP) was effectively improved by post-treatment of various metal alkoxide sol solutions. Metal oxide layer derived from sol-gel process of metal alkoxide was generated on the PEDOT thin film layer by VPP, resulting in improving mechanical properties of the conductive thin films without any deterioration of their original surface resistance. Several kinds of silicone and titanium alkoxide derivatives with various functional groups were used as metal alkoxide sol sources. Among them, PEDOT-metal oxide composite thin film derived tetraethyl orthosilicate showed the best performance in the terms of surface resistance, transmittance, and various physicochemical properties. The effect of metal alkoxide content in washing solution, oxidant content and drying temperature have been investigated in order to optimize the various properties of PEDOT-metal oxide composite thin film.

Prokaryotic Communities of Halophilic Methylotrophs Enriched from a Solar Saltern (염전으로부터 농화배양된 호염 메틸영양미생물 군집의 특성)

  • Kim, Jong-Geol;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.286-290
    • /
    • 2010
  • C-1 compounds are observed in anaerobic sediment of high salt environments. Thus, surface sediments and waters from these environments are therefore potential habitats for aerobic methylotrophic microorganisms. The soil samples collected from saltern and tidal flat as inoculums and methanol as carbon and energy source was supplied. After subculture depending on the salt concentration, methanol oxidizing bacteria growth condition investigated, the results of methanol oxidizing bacteria can grow in salt conditions, and the maximum concentration was 20%. Analysis based on denaturing gradient gel electrophoresis of 16S rRNA genes indicates that Methelyophaga-like bacteria were dominants of methylotrophs in the enrichment culture. Quantitative PCR showed that archaeal cells were about 1-10% of bacterial cells. Additionally archaea were assumed not to be involved in methanol oxidation since bacterial antibiotics completely blocked the methanol oxidation. Our results suggest that Methelyophaga-like bacteria could be involved in C-1 compounds oxidation in hypersaline environments although those activities are sensitive to salinity above 20%.

Preparation and Characterization of Unsaturated Poly(3-hydroxyalkanoate) Nanoparticles (불포화 폴리히드록시알칸오에이트 나노입자의 제조 및 특성)

  • 한정현;김승수;신병철;이영하;홍성욱
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.542-548
    • /
    • 2003
  • Nanoparticles with unsaturated poly(hydroxyalkanoate)s (UPHAs) biosynthesized with Pseudo-monas oleovorans were prepared by spontaneous emulsification solvent diffusion method. The influence of nanoparticle formation was investigated with various experimental parameters such as sonication conditions, sol-vent, surfactant and polymer contents, etc. The physical and chemical properties of UPHAS and its nanoparticles were characterized using $^1$H- and $\^$13/C-nuclear magnetic resonance spectroscopies, attenuated total reflection infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography. The morphology of particles was observed using scanning electron microscope and the size and distribution of nanoparticles were measured with electrophoretic light scattering spectrophotometer. The mean diameter of particles decreased with increasing sonication amplitude and time. The addition of ethanol into UPHAS chloroform solution decreased the particle size presumably due to increased solvent diffusion into water phase. The particle size increased with increased the concentration of UPHAS solution. Under the 2-4% poly(vinyl alcohol) (PVA) aqueous solution the minimum mean diameter of particles was shown. The higher degree of hydrolysis and degree of polymerization of PVA increased the mean diameter of particles.

Temperature-Sensitive Polymers Adhered on FO Membrane as Drawing Agents (자극감응성 유도용질로서 정삼투막에 부착된 온도감응성 고분자)

  • Lee, Chong-Cheon;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.626-631
    • /
    • 2014
  • Water purification requires a large amount of energy that can cause pollution problems. For this reason, forward osmosis (FO) has attracted intense interest that required a relatively low amount of energy for water purification. The forward osmosis has a serious problem that it needs drawing agents creating osmotic pressure to extract water from contaminated water. In this study, a copolymer of zwitterionic moiety and an interpenetrating polymer network (IPN) hydrogel based on thermo-responsive polymer hydrogel, poly(N-isopropylacrylamide) (PNIPAM) were prepared and attached on FO membranes, which successfully played the role of drawing agents. In the copolymer hydrogel, its swelling ratio was improved, but thermo-sensitivity was decreased. The swelling ratio and thermo-sensitivity of IPN hydrogel was lowered. We could confirm that swelling ratio is related to osmotic pressure.

4-Arm Star Shaped and Linear Block Copolymers for Copper Phthalocyanine Dispersion (4-Arm 스타형과 선형 블록 공중합체의 구리 프탈로시아닌 분산 연구)

  • Kim, Byoungjae;Jeong, Jonghwa;Jung, Ji-Hye;Kim, Bong-Soo;Jung, Ki-Suck;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.671-675
    • /
    • 2014
  • Well-defined star shaped and linear block copolymers were synthesized to study the dispersion stability of copper phthalocyanine (CuPc). We synthesized dispersants using (2-dimethylamino) ethyl methacrylate (DMAEMA) and poly(ethylene glycol) methyl ether methacrylate) (PEGMA) by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). pDMAEMA-b-pPEGMA copolymers were characterized by GPC and NMR. Furthermore, we studied the effect of the dispersion stability of copper phthalocyanine by controlling the degree of polymerization of PEGMA as a stabilizing group. The 4-arm star shaped polymeric dispersant showed better dispersion stability of CuPc at $25^{\circ}C$ for 7 days.