Synthesis and Characterization of Cellulose-Hybrid Polystyrene Nanoparticles by Using Reactive Hydroxypropyl Methylcellulose Phthalate

반응형 히드록시프로필 메틸셀룰로오스 프탈레이트를 이용한 셀룰로오스 혼성 폴리스티렌 나노입자의 합성 및 특성 분석

  • Cheong In-Woo (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2006.09.01

Abstract

Reactive hydroxypropyl methylcellulose phthalate (reactive HPMCP) was synthesized by using a stepwise urethane reaction with isophorone diisocyanate (IPDI) and 2-hydroxyethyl moth acrylate (HEMA). Molecular weight, acid number, and critical micelle concentration (CMC) of the synthesized reactive HPMCP and pristine HPMCP were measured and used as a polymeric surfactant in the emulsion polymerizations of styrene. In the preparation of HPMCP-hybrid poly styrene nanoparticles, 6, 9, 12, 18, and 24 wt% of HPMCPs were introduced, and the maximum rate of polymerization ($R_{p,max}$), the average number of radicals per particle (n), particle size distribution were investigated. In addition, core - shell morphology of the nanoparticles were observed by using TEM and their thermal stabilities were measured by using TGA. Reactive HPMCP showed higher $R_{p,max}$, smaller particle size, larger values of n and gel contents as compared with pristine HPMCP, due to the vinyl groups from HEMA, which can be reacted with styrene oligomers, in the reactive HPMCP.

Hydroxypropyl methylcellulose phthalate (HPMCP)에 isophorone diisocyanate (IPDI)와 2-hydroxyethyl methacrylate (HEMA)를 순차적으로 반응하여 우레탄 그룹을 형성하고 HPMCP에 비닐 그룹을 도입하여 반응형(reactive) HPMCP를 합성하였다. 제조된 반응형의 HPMCP와 반응전의 순수한 HPMCP의 분자량, 산가, 임계 미셀 농도(CMC) 등을 측정하였으며, 스티렌의 유화 중합에 고분자 유화제로서 도입하였다. HPMCP의 함량을 단량체인 스티렌 대비로 6, 9, 12, 18, 24 wt%로 도입하여 HPMCP 혼성 폴리스티렌 나노입자를 제조하고, 최대 중합 속도($R_{p,max}$), 입자당 평균라디칼 개수(n), 입자 크기 분포 등을 분석하였다. 또한 제조된 HPMCP 혼성 폴리스티렌 나노입자의 모폴로지를 TEM으로 분석하여 core-shell 구조임을 확인하였으며, TGA를 이용하여 열적안정성의 변화를 분석하였다. 반응형 HPMCP는 순수 HPMCP와는 달리 HEMA의 비닐 그룹으로 인해 높은 중합속도와 작은 입자 크기, 높은 표 값을 나타내었으며, 높은 젤 함량을 나타내었다.

Keywords

References

  1. J. M. Geurts, M. Lammers, and A. L. German, Colloids Surf. A, 108, 295 (1996) https://doi.org/10.1016/0927-7757(95)03404-8
  2. M. J. Monteiro, M. Sjoberg, J. Van der Vlist, and C. M. Gottgens, J. Polym. Sci.; Part A: Polym. Chem., 38, 4206 (2000) https://doi.org/10.1002/1099-0518(20001201)38:23<4206::AID-POLA60>3.0.CO;2-E
  3. O. Soula, A. Guyot, N. Williams, J. Grade, and T. Blease, J. Polym. Sci.; Part A: Polym. Chem., 37, 4205 (1999) https://doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4205::AID-POLA21>3.0.CO;2-B
  4. T. S. Wilkinson, A. Boonstra, A. Montoya-Goni, S. van Es, M. J. Monteiro, and A. L. German, J. Colloid Interf. Sci., 237, 21 (2001) https://doi.org/10.1006/jcis.2001.7430
  5. S. S. Ivanchev, V. N. Pavljuchenko, and N. A. Byrdina, J. Polym, Sci.; Part A: Polym. Chem., 25, 47 (1987) https://doi.org/10.1002/pola.1987.080250106
  6. J. M. H. Kusters, D. H. Napper, R. G. Gilbert, and A. L. German, Macromolecules, 25, 7043 (1992) https://doi.org/10.1021/ma00051a049
  7. K. Tauer, K.-H. Goebel, and S. Kosmella, Makromol. Chem., Macromol. Symp., 31, 107 (1990)
  8. S. Abele, C. Gauthier, C. Graillat, and A. Guyot, Polymer, 41, 1147 (2000) https://doi.org/10.1016/S0032-3861(99)00233-5
  9. J. I. Amalvy, M. J. Unzue, H. A. S. Schoonbrood, and J. M. Asia, Macromolecules, 31, 5631 (1998) https://doi.org/10.1021/ma980342d
  10. P. Chambon, B. Radhakrishnan, E. Cloutet, E. Papon, and H. Cramail, Macromol Symp., 199, 47 (2003)
  11. M. Dreja, W. Pyckhout-Hintzen, and B. Tieke, Macromolecules, 31, 272 (1998) https://doi.org/10.1021/ma971153i
  12. F. Vidal, A. Guyot, and R. G. Gilbert, Macromol. Chem. Phys., 197, 1835 (1996) https://doi.org/10.1002/macp.1996.021970605
  13. F. Vidal, J. Guillot, and A. Guyot, Colloid Polym. Sci., 273, 999 (1995) https://doi.org/10.1007/BF00657666
  14. E. T. W. M. Schipper, O. Sindt, T. Hamaide, P. L. Desmazes, B. Muller, A. Guyot, M. J. W. A. Vandenenden, F. Vidal, J. J. G. S. Vanes, A. L. German, A. M. Goni, D. C. Sherrington, H. A. S. Schoonbrood, J. M. Asua, and M. Sjoberg, Colloid Polym. Sci., 276, 402 (1998) https://doi.org/10.1007/s003960050259
  15. X. Wang, B. Boya, E. D. Sudol, and M. S. El-Aasser, Macromolecules, 34, 8907 (2001) https://doi.org/10.1021/ma0107307
  16. J. L. Mura and G. Riess, Polym. Adv. Tech., 6, 497 (1995) https://doi.org/10.1002/pat.1995.220060711
  17. Y. W. Luo, J. Tsavalas, and F. J. Schork, Macromolecules, 34, 5501 (2001) https://doi.org/10.1021/ma0020741
  18. S. Li, C. J. Clarke, R. B. Lennox, and A. Eisenberg, Colloids Surf. A, 133, 191 (1998) https://doi.org/10.1016/S0927-7757(97)00197-0
  19. I. W. Cheong, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 202, 2454 (2001) https://doi.org/10.1002/1521-3935(20010701)202:11<2454::AID-MACP2454>3.0.CO;2-M
  20. B. Yamada, M. Azukizawa, H. Yarnazoe, D. J. T. Hill, and P. J. Pomery, Polymer, 41, 5611 (2000) https://doi.org/10.1016/S0032-3861(99)00794-6
  21. A. N. F. Peck, R. A. Hutchinson, and M. C. Grady, Abstracts of Papers, 224th ACS Nat'l Meeting, Boston, MA, Aug., 18-22 (2002)
  22. D. J. Britton, P. A. Lovell, F. Heatley, and R. Venkatesh, Macromol. Symp., 175, 95 (2001)
  23. F. Heatley, P. A. Lovell, and T. Yamashita, Macromolecules, 34, 7636 (2001) https://doi.org/10.1021/ma0101299
  24. I. H. Kim, J. H. Park, I. W. Cheong, and J. H. Kim, J. Control. Release, 89, 225 (2003) https://doi.org/10.1016/S0168-3659(03)00089-0
  25. I. W. Cheong, H. C. Kong, J. H. An, and J. H. Kim, J. Polym. Sci.; Part A: Polym. Chem., 42, 4353 (2004) https://doi.org/10.1002/pola.20298
  26. I. W. Cheong and J. H. Kim, Chem. Comm., 2484 (2004)
  27. D. J. Hourston and J. Romaine, J. Appl. Polym. Sci., 43, 2207 (1991) https://doi.org/10.1002/app.1991.070431208
  28. I. W. Cheong, M. Nomura, and J. H. Kim, Macromol. Chem. Phys., 201, 2221 (2000) https://doi.org/10.1002/1521-3935(20001101)201:17<2221::AID-MACP2221>3.0.CO;2-1
  29. X. Wang, E. D. Sudol, and M. S. El-Aasser, Langmuir, 17, 6865 (2001) https://doi.org/10.1021/la010641n
  30. E. L. Kitzmiller, C. M. Miller, E. D. Sudol, and M. S. El-Aasser, Macromol. Symp., 92, 157 (1995)
  31. X. Wang, E. D. Sudol, and M. S. El-Aasser, Macromolecules, 34, 7715 (2001) https://doi.org/10.1021/ma0107298
  32. M. Buback and C. H. Kurz, Macromol. Chem. Phys., 199, 2301 (1998) https://doi.org/10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V
  33. M. Adams, D. H. Napper, R. G. Gilbert, and D. F. Sangster, J. Chem. Soc. Faraday Trans. 1, 82, 1979 (1986)
  34. M. C. Grady, DECHEMA Mongr., 134, 313 (1998)
  35. J. Ugelstad, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci.; Polym. Lett. Ed., 11, 503 (1973) https://doi.org/10.1002/pol.1973.130110803
  36. J. Ugelstad, P. C. Mork, P. Dahl, and P. Rangenes, J. Polym. Sci. C, 27, 49 (1969)