• Title/Summary/Keyword: 제주도 지하수

Search Result 269, Processing Time 0.027 seconds

Evaluation of Groundwater Contamination Potential of Pesticides Using Groundwater Ubiquity Score in Jeju Island Soils (Groundwater Ubiquity Score를 이용한 제주도 토양 특성별 농약의 지하수 오염가능성 평가)

  • Hyun, Hae-Nam;Jang, Gong-Man;Oh, Sang-Sil;Chung, Jong-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.144-153
    • /
    • 2007
  • One of the most recent issues facing the pesticides regulatory process is the assessment of the potential for pesticides to leach through soil and appear in groundwater. Since Jeju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water, it is important to identify which pesticides are the most likely to result in groundwater contamination. The objective of this study was to assess groundwater contamination risk of 21 pesticides (12 insecticides, 6 herbicides and 3 fungicides) in Jeju soils using groundwater ubiquity score (GUS). Considering GUS estimated in 21 representative series of Jeju soils, generally herbicides showed relatively higher leaching potentials and insecticides showed lower leaching potentials. Groundwater contamination risk was higher in the order of bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor for herbicides, carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos for insecticides, and metalaxyl > chlorothalonil > triadimefon for fungicides. Among the tested pesticides alachlor, metolachlor, bromacil, ethoprophos and carbofuran were classified as the pesticides of very high or high groundwater contamination potential. Although the ranking of the leaching potential was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties, variation of the relative groundwater contamination potentials of each pesticides in different soils were not significant. Therefore, the above ranking of groundwater contamination risk would be applied in most of Jeju soils. To lower the possibility of pesticide contamination of groundwater, the use of those pesticides classified as high or very high leaching potential should be strictly regulated in Jeju Island.

Reporting groundwater quality anomalies caused by grouting of wells (관정 그라우팅 시공에 의한 지하수 이상 수질 현상 보고)

  • Koh, Chang-Seong;Hyun, Beom-Seok;Koh, Eun-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.10
    • /
    • pp.757-767
    • /
    • 2024
  • In the Hankyung-Daejeong watersheds of western Jeju Island, several groundwater wells showed abnormal measurements of high electrical conductivity (EC) and pH. To identify the causes of this abnormal water quality, we conducted borehole imaging, vertical EC logging, groundwater quality analysis, and SEM-EDS analysis of white suspended matter in the well. Most of the wells showing abnormal water quality had well-grouting below the water table, with borehole EC values ranging from 300 to 10,000 μS/cm. The wells exhibited higher ion concentrations compared to nearby wells and had a high pH range of 8.2 to 12.7, indicating a slightly to strong alkalinity. The primary components of the white-colored suspended matter were identified as oxygen and magnesium. These findings suggest that the abnormal water quality of the study wells is caused by the cement mortar used for grouting during well construction rather than by nitrate contamination or seawater intrusion. To prevent the influence of well-grouting on water quality during groundwater well development, an establishment of standards for groundwater development and utilization facilities is needed.

The Convergence of IT and Jeju Water Industry (제주물산업과 IT 융합방안)

  • Piao, Jin Long;Kim, Seong-Baeg
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1037-1040
    • /
    • 2010
  • 최근에 기술 융합이 새롭게 대두되고 있다. 본 논문은 기술융합 시대를 맞이하여 현재 기술 융합의 핵심 요소인 IT와 융합된 기술 융합 현황을 분석알아 본다. 또한, 국내외 전반적인 기술융합 발전방향을 파악하며 이를 바탕으로 제주도 물산업과 IT의 융합 방안을 제시한다. 특히 제주 물산업은 지하수를 바탕으로 하고 있기 때문에 지하수와 강수량 데이터의 연관 분석이나 지하수의 시각화 과정에서 IT 융합을 어떻게 할 수 있는 지를 고찰한다.

  • PDF

Estimating Willingness-to-pay for the Ground Water Quality Improvement in Jeju Island Using Contingent Valuation Method (조건부가치측정법을 이용한 제주도 지하수 수질개선에 대한 지불의사액 추정)

  • Jungkyu Park;Chanhee Lee
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.619-644
    • /
    • 2022
  • The purpose of this study is to estimate the economic benefit of improving ground water quality in Jeju Island, where groundwater pollution has recently become a social issue and various water quality improvement projects are being promoted. By applying the contingent valuation method, an online survey was conducted on Jeju Island residents to analyze the response data of 542 respondents and estimate the mean willingness to pay using 16 models. The estimation of the double-bounded dichotomous choice model confirmed that each household was willing to pay 28,008 won per year, with the willingness to pay estimated at a minimum of 17,762 won and a maximum of 37,416 won based on different models. The total annual benefit for Jeju Island's ground water quality improvement was estimated to be about 8.66 billion won , and socioeconomic factors influencing willingness-to-pay were investigated. This study is expected to serve as a foundation for the development of environmental improvement policies by assisting in the understanding of Jeju Island's unique water resource environment.

Sustainable Yield of Groundwater Resources of the Cheju Island (제주도 지하수자원의 최적 개발가능량)

  • Hahn, Jeong-Sang;Hahn, Kyu-Sang;Kim, Chang-Kil;Kim, Nam-Jong;Hahn, Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic log and aquifer test were analyzed to determine hydrogeologic characteristics of the Cheju island. The groundwater. of the Cheju island is occurred in unconsolidated pyroclastic deposits and crinker interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types under unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300㎡/day and 0.12 respectively, The total storage of groundwater is estimated about 44 billion cubic meters. Average annual precipitation is about 3,390 million ㎥ among which average recharge is estimated for 1,494 million ㎥ being equivalent 44.1% of total annual precipitation with 638 million ㎥ of runoff and 1,256 million ㎥ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million ㎥(41% of annual recharge)and rest is discharging into the sea. The geologic logs of recently drilled thermal water wells indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy silt derived from mainly volcanic ashes at the 1st stage volcanic activity of the area is situated at the 120${\pm}$68m below sea level. Another low-permeable sedimentary rock called Seogipo-formation which is deemed younger than the former marine sediment is occured at the area covering north-west and western part of the Cheju island at the ${\pm}$70m below sea level. If these impermeable beds art distributed as a basal formation of fresh water zone of the Cheju island, the most of groundwater in the Cheju island will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Characterization of Groundwater Quality and Recharge using Periodic Measurements of Hydrogeochemical Parameters and Environmental Tracers in Basaltic Aquifers of Jeju Island (수리지구화학적 인자와 환경 추적자의 주기적 관측에 의한 제주도 지하수의 수질과 함양 특성 분석)

  • Koh, Dong-Chan;Cheon, Su-Hyun;Park, Ki-Hwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.60-71
    • /
    • 2007
  • Groundwater from public wells was monitored during one year with two month interval for hydrogeochemical parameters and chlorofluorocarbons (CFCs) as environmental tracers in Jeju Island. Concentrations of major cations and $SiO_2$ show variation less than 10% whereas $NO_3$ and dissolved oxygen (DO) showed larger variation though DO variation did not change oxic or suboxic condition. $NO_3$ concentration has no consistent seasonal pattern with the largest variation of 35%. Groundwater ages determined by CFCs became temporarily younger by 5 years in October for groundwater with ages of 15 to 25 years, which can be attributed to infiltrating water in rainy season. Compared to air temperature, groundwater temperature has much smaller variation with no phase difference, which can be accounted for by a two-component model consisting of infiltrating water from surface and deeper groundwater with negligible temperature variation. The relatively small variation in groundwater age and temperature indicates that groundwater recharge through fast flow-paths is much smaller compared with basal groundwater in terms of aquifer storage.

제주도 동부지역 지하수의 담.염수경계면 분포와 변화

  • 박원배;박윤석;고기원;문덕철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.55-58
    • /
    • 2003
  • 제주도 동부지역에 위치한 심부관측정(해수면 하 60m 이상 착정) 11개소를 대상으로 2001 년 11월부터 2002년 10월까지 1년간 담.염수 경계면의 분포와 변화에 대하여 조사를 실시하였다. 담.염수 경계면의 두께는 대체로 해안에서 내륙 쪽으로 향함에 따라 두터워지는 경향을 나타냈고, 해안에서 6~6.kmm 이상 지역에는 담.염수 경계면을 갖는 기저지하수체가 발달하지 않는 것으로 조사되었다. 또한, 담.염수 경계면은 조석의 영향에 의해 1일 동안 최대 8.1m, 최소 0.14m의 변화를 나타냈으며, 계절에 따라서는 최대 33.2m, 최소 2m의 수축 및 확장을 일으키는 것으로 조사되었다. 조석과 계절에 따른 담.염수 경계면의 수축과 확장의 폭은 조사대상 관측정의 위치, 지하지질, 강우량 등의 여러 가지 요인에 의해 좌우되고 있는 것으로 해석되었다.

  • PDF

Protection for sea-water intrusion by geophysical prospecting & GIS (해수침투 방지를 위한 물리검층과 GIS 활용방안)

  • Han Kyu-Eon;Yi Sang-Sun;Jeong Cha-Youn
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.54-69
    • /
    • 2000
  • There are groundwater trouble by high-salinity yield inducing sea-water intrusion in Cheju Island. It is used groundwater-GIS(Well-lnfo) in the maintenance and management of groundwater in Cheju Island to grasp groundwater trouble area and cause of high-salinity yield. For 16 wells certain to yield high-salinity, we logged specific electrical conductivity(EC) and tried to get hold of freshwater and saltwater relationship. As result of distribution of $Cl^-$ by depth, it is showed up groundwater trouble by high-salinity yield in the east coastal area and the partly north coastal area. The reason of high-salinity groundwater yield are low-groundwater level by the structure of geology and low-hydraulic gradient etc. There is necessity for management to development and use of groundwater in the high-salinity area, special management area.

  • PDF