• Title/Summary/Keyword: 제작시간

Search Result 4,505, Processing Time 0.036 seconds

Analysis of the Eyeglasses Supply System for Ametropes in ROK Military (한국군 비정시자용 안경의 보급체계 분석)

  • Jin, Yong-Gab;Koo, Bon-Yeop;Lee, Woo-Chul;Yoon, Moon-Soo;Park, Jin-Tae;Lee, Hang-Seok;Lee, Kyo-Eun;Leem, Hyun-Sung;Jang, Jae-Young;Mah, Ki-Choong
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.579-588
    • /
    • 2018
  • Purpose : To analyze the eyeglasses supply system for ametropic soldiers in ROK military. Methods : We investigated and analyzed the supply system of eyeglasses for the ametropic soldiers provided by the Korean military. The refractive powers and corrected visual acuity were measured for 37 ametropic soldiers who wear insert glasses for ballistic protective and gas-masks supplied by the military based on their habitual prescriptions. Full correction of refractive error was prescribed for subjects having less than 1.0 of distance visual acuity, and comparison was held for inspecting the changes in corrected visual acuity. Suggestions were provided for solving the issues regarding current supplying system, and this study investigated the applicabilities for utilizing professional optometric manpower. Results : The new glasses supplied by army for ametropic soldiers were duplicated from the glasses they worn when entering the army. The spherical equivalent refractive powers of the conventional, ballistic protective and gas-mask insert glasses supplied for 37 ametropic soldiers were $-3.47{\pm}1.69D$, $-3.52{\pm}1.66D$ and $-3.55{\pm}1.63D$, respectively, and the spherical equivalent refractive power of full corrected glasses was $-3.79{\pm}1.66D$, which showed a significant difference(p<0.05). The distant corrected visual acuity measured at high and low contrast(logMAR) of conventional, ballistic protective and gas-mask insert glasses were $0.06{\pm}0.80$, $0.21{\pm}0.82$, $0.15{\pm}0.74$, $0.34{\pm}0.89$, $0.10{\pm}0.70$ and $0.22{\pm}0.27$, respectively, while the corrected visual acuity by full corrected glasses were increased to $0.02{\pm}1.05$, $0.10{\pm}0.07$, $0.09{\pm}0.92$, $0.26{\pm}0.10$, $0.04{\pm}1.00$ and $0.19{\pm}1.00$, respectively. There was a significant difference(p<0.05) except for the case of the low contrast corrected visual acuity of the conventional and gas-mask insert glasses. The procedure for ordering, dispensing, and supplying military glasses consists of 5 steps, and it was found that approximately two weeks or more are required to supply from the initial examination. Conclusion : The procedure of supplying the military glasses showed three issues: 1) a lack of refraction for prescription system, 2) relatively long length of time required for supplying the glasses, 3) an inaccurate power of supplied glasses. In order to solve those issues, in the short term, education is necessarily required for soldiers on the measurement of the refractive powers, and in the near future, further standard procedures for prescription of glasses as well as the securement of optometric manpower are expected.

Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu (부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 -)

  • Park, Weonmo;Go, Jungil;Kim, Yongsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.351-378
    • /
    • 2006
  • With the development of media, the methods for the documentation of intangible cultural heritage have been also developed and diversified. As well as the previous analogue ways of documentation, the have been recently applying new multi-media technologies focusing on digital pictures, sound sources, movies, etc. Among the new technologies, the documentation of intangible cultural heritage using the method of 'Motion Capture' has proved itself prominent especially in the fields that require three-dimensional documentation such as dances and performances. Motion Capture refers to the documentation technology which records the signals of the time varing positions derived from the sensors equipped on the surface of an object. It converts the signals from the sensors into digital data which can be plotted as points on the virtual coordinates of the computer and records the movement of the points during a certain period of time, as the object moves. It produces scientific data for the preservation of intangible cultural heritage, by displaying digital data which represents the virtual motion of a holder of an intangible cultural heritage. National Research Institute of Cultural Properties (NRICP) has been working on for the development of new documentation method for the Important Intangible Cultural Heritage designated by Korean government. This is to be done using 'motion capture' equipments which are also widely used for the computer graphics in movie or game industries. This project is designed to apply the motion capture technology for 3 years- from 2005 to 2007 - for 11 performances from 7 traditional dances of which body gestures have considerable values among the Important Intangible Cultural Heritage performances. This is to be supported by lottery funds. In 2005, the first year of the project, accumulated were data of single dances, such as Seungmu (monk's dance), Salpuri(a solo dance for spiritual cleansing dance), Taepyeongmu (dance of peace), which are relatively easy in terms of performing skills. In 2006, group dances, such as Jinju Geommu (Jinju sword dance), Seungjeonmu (dance for victory), Cheoyongmu (dance of Lord Cheoyong), etc., will be documented. In the last year of the project, 2007, education programme for comparative studies, analysis and transmission of intangible cultural heritage and three-dimensional contents for public service will be devised, based on the accumulated data, as well as the documentation of Hakyeonhwadae Habseolmu (crane dance combined with the lotus blossom dance). By describing the processes and results of motion capture documentation of Salpuri dance (Lee Mae-bang), Taepyeongmu (Kang seon-young) and Seungmu (Lee Mae-bang, Lee Ae-ju and Jung Jae-man) conducted in 2005, this report introduces a new approach for the documentation of intangible cultural heritage. During the first year of the project, two questions have been raised. First, how can we capture motions of a holder (dancer) without cutoffs during quite a long performance? After many times of tests, the motion capture system proved itself stable with continuous results. Second, how can we reproduce the accurate motion without the re-targeting process? The project re-created the most accurate motion of the dancer's gestures, applying the new technology to drew out the shape of the dancers's body digital data before the motion capture process for the first time in Korea. The accurate three-dimensional body models for four holders obtained by the body scanning enhanced the accuracy of the motion capture of the dance.

A Case Study(II) on Development and Application of 'Literature-Art-Science' Integrated Education Programs ('문학-미술-과학' 융합교육 프로그램의 개발 및 적용 사례 연구(II))

  • Choi, Byung Kil
    • Korea Science and Art Forum
    • /
    • v.32
    • /
    • pp.319-334
    • /
    • 2018
  • This research is a case study to make sure the enhancement of students' imagination and creativity through developing and applying the Literature-Art-Science Integrated Education Program. Its research object was totally 25 persons of 29 students of the 1st to the 4 th Grades from Gunsan Sulsan Elementary School. Its research period lasted for 4 months from September to December, 2017, and I, as the research place, used the art room at Gunsan Sulsan Elementary School. The programs were totally 10 sessions with a unit of 1 session per each grade for 2 hours from 1:00 to 3:00 in the afternoon from Monday through Friday. I fixed ten themes of this program-eight plane modeling, and two solid modeling, and finished the work of storytelling during summer vacation. And I arranged their levels as low:middle:high(3:5:2) ones. The former was 'A Film of Monster Gorilla'(L), 'Learning the Spirit of Gyeongju Choi's Family'(M), 'A Tale of My Friend Made of Natural Materials'(L), 'The Reading of My Dream'(M), 'Gathering the Objects in My Mobile'(M), 'A Mock Trial of Marrying Off'(M), 'Painting My Favorite Children's Poem'(H), and 'Painting My Favorite Children's Song'(H), and the latter was 'Seeking for a Bluebird in My Mind'(L), and 'Making My Cherished Object' (M). Then I used the unique art expression technique per each theme, which were in sequence marbling, Korean paper art, combine painting, collage, imaginary painting, imaginary painting, play dough art, imaginary painting techniques. And I delivered to the students the scientific knowledge in terms of growing or manufacturing processes of materials used for making artworks. Prior to and after the processing this program, I surveyed about the students' ability of integrated thinking and emotional experience by 'Figure B Type' and 'Figure A Type' of The Torrance Tests of Creative Thinking, and took statistics with the resultant data. And I executed a paired t-test in order to verify the significance of mean difference in the result of investigation with those data. From the analyzed result according to the elements of creativity and the mean quotients of creativity, there showed a significant difference (t=3.47, p<.01) in 'fluency', and also a significant difference(t=3.59, p<.01) in 'creativity.' Judging from the statistic values of two fields such as the student's ability of integrated thinking and emotional experience, I estimate that over the majority of the students showed the enhancement in self-confident creative expression as well as higher interest and concern through this program. The result that I arranged and analyzed the making process of artworks, the photos of the resultant, etc. as such is as follows : Firstly, from this program being proceeded as art-centered STEAM class, the student's systematic problem-solving ability was improved in his ability of integrated thinking to transform the literary contents into artistic one. Secondly, the student obtained the emotional experience such as interest in the class, self-confidence, intellectual satisfaction, self-fulfillment, etc. through art-centered STEAM class using ten art expression techniques. Thirdly, the student's mind willing to cooperate, communicate with his friends, and care for them was ripened in the process of problem-solving. Fourth, the student's self-confidence was further instilled when presenting famous artists and their artworks in the introduction and finale of ten art expression techniques. Likewise, the statistic values on the fields of student's ability of integrated thinking and emotional experience illustrate that over the majority of the students showed improvement in the ability of creative expression with confidence as well as higher interest and concern upon this program.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF