• Title/Summary/Keyword: 제어된 환경에서 농업

Search Result 215, Processing Time 0.034 seconds

Development of an Environmental Monitoring and Warning System for Cold Storage Rouse Using Internet (인터넷을 이용한 저온저장고 환경감시 및 경보 시스템 개발)

  • Jeong, Hoon;Yun, Hong-Sun;Lee, Won-Og;Cho, Kwang-Hwan;Cho, Young-Kil;Park, Won-Kyu;Shin, Jae-Hun
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.28-31
    • /
    • 2003
  • For safe storage of agricultural products in the cold storage house, accurate monitoring of temperature, humidity and gas conditions is necessary. This study was conducted to develop an environmental monitoring and warning system for the cold storage house to improve safety of storage. The system developed in this study is able to monitor temperature, humidity and $CO_2$concentration in the storage house and to send alarm signal to the farmer by telephone and beeper when abnormal conditions have been occurred in the storage house. And the developed system use internet network so we can supervise storage conditions in the home. From the results of the performance test, it was found that the temperature and relative humidity can be controlled within the range of 0.5$^{\circ}C$ and $\pm$2 percent. And farmer's response was fair.

ICT Standardization Strategy Item Analysis for Smart Farming and Livestock Farming (스마트 농축산업을 위한 ICT 표준화 중점항목 분석)

  • Kim, Dong-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.607-612
    • /
    • 2017
  • IT convergence with agriculture and livestock farming are expected to bring more efficiency and quality improvement in producing, distributing, consuming of agricultural products with the aid of information processing and autonomous control technologies of the IT area. The standardization work for smart farming and livestock farming based on networks is just at the beginning stage. And also, it is capable of coping with environment and technical problems with the actualized IT convergence case for agriculture. Hence, more studies on each point are required to finish the works including amendments and enhancements. More interests are expected to attain the successful results that ultimately contribute to innovate in the lifestyle. In this paper, it is analyzed strategy item and consider the actualized IT convergence case for agriculture and livestock, namely Smart Farming and Smart livestock Farming as a solution to cope the presented problems. In addition, suggest to ICT standardization road map for future planning.

A Study on Application Methods of Drone Technology (드론기술 적용 방안 연구)

  • Kim, Hee-Wan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.601-608
    • /
    • 2017
  • In the fourth industrial revolution, drones are an important element to lead the industry by converging with information technology. Drones are developing various technologies by combining with communication / navigation / traffic management technology, control and detection / avoidance technology, sensor technology, SW and application technology. However, there are various problems in order to settle the drone technology. In this paper, it will be examined the problems of application of drones through application fields of drones, domestic and foreign cases, and core technologies of drones. The growth of the drone market requires improvement of laws and institutions. This paper proposed security vulnerability, privacy and safety problem in wireless communication, and present technical and management problems for drone service in the Korean environment in particular.

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.

Development of Automated Quantitative Spray Control System for High Quality Crop Cultivation (고품질 작물 재배를 위한 자동화 정량 방제 제어 시스템 개발)

  • Oh, Seung-Ho;Yang, Seong-Wook;Kim, Hyung-Chan;Kim, Do-Hyeon;Doh, Yang-Hoi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Recently, several researches have been studied on agricultural automation system according to convergence of IT technology with agriculture. An automatic control system of the growth environment in crops is one of the these researches. The controls of damages caused by diseases and insects pest in crops are mainly carried out by manual mode or semi-automatic mode because of farmer's concerns for poor efficiency. But, this situation needs to be improved because it occurs various problems, such as human exposure to toxic pesticides, environmental pollution and waste due to drug overuse. In order to solve these problems, we developed an automatic quantity control system which based on the amount of pesticides for area under cultivation. The amount of pesticides is calculated according to the manufacturer's instruction for pesticides. To verify the effectiveness of our developed automatic system, we also compared with the systems of manual mode and the semi-automatic mode. The experimental results of a pest control performance of an automatic quantity control system showed that automatic system can reduce overuse of drugs. These results suggested that it can be expected to replace the existing system, with equivalent effectiveness to the manual mode.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Constructing of Humidity Automatic Regulation Environment to Build Effective Mushroom Growing Environment (버섯의 효과적인 생육환경 구축을 위한 자동 습도조절 환경 연구)

  • Xu, Chen-Lin;Lee, Hyun-Chang;Kang, Sun-kyung;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2597-2602
    • /
    • 2015
  • With the development of economy and improving of people's living standards, people dietary needs will be achieved from subsistence to high nutrition and from high nutrition to healthy transformation. Mushroom as a kind of highly nutritious, low fat, rich vitamin food has a great interest among the people. This makes the mushroom into a new sunrise industry and it gradually from pure manual cultivation develops toward the fully automatic factory. In the process of mushroom factory production, regulation of environmental factors directly affects the yield and quality of mushroom. In related to the methods of mushroom cultivation, the recent technologies apply the new technology such as sensors and IT convergence services. And then cultivating mushroom is managed effectively. This paper in order to solve the above problems and construct an effective mushroom growth environment using technology such as humidity sensor construct an environment that can automatically adjust the humidity. This environment has important significance to improve the level of automation mushroom production, increase yield per unit area and quality of mushroom, increase economic efficiency of mushroom production, and enhance the competitiveness of mushroom production.

Evaluation on the Performance of Relief Wells Using Geosynthetics Blanket Length as a Parameter in an Agricultural Reservoir Embankment (농업용 저수지 제방에서 토목섬유 블랭킷의 길이에 따른 감압정의 성능 평가)

  • Ryu, Jeonyong;Kim, Seungwook;Chang, Yongchai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.6
    • /
    • pp.5-17
    • /
    • 2022
  • The performance of the relief wells installed for the purpose of controlling seepage of the dam embankment is affected by various parameters such as diameter, spacing, penetration rate, permeability coefficient of the ground, thickness of the foundation layer. Therefore, when the relief wells are adopted for the purpose of reducing seepage pressure, these parameters should be sufficiently reviewed to determine the installation specifications of the relief wells. This study evaluated the effect of the length of the geosynthetics blanket on the performance of the relief wells installed in the downstream part of the dam embankment with blankets in the upstream and downstream part of the dam embankment as countermeasure methods to control seepage of the dam embankment. In the relationship between the length of the upstream and downstream blanket and the discharge, the discharge of the relief wells decreases as the length of the upstream blanket increases, and on the other hand, the discharge of the relief wells decreases as the length of the downstream blanket increases. In the upper and lower blanket length-spacing relationship, as the length of the upstream blanket increases, the spacing of the relief wells increases and as the length of the downstream blanket increases, the spacing of the relief wells decreases. Therefore, when installing the relief wells in parallel with the blanket, it was found that increasing the length of the upstream blanket is more efficient than increasing the length of the downstream blanket in order to minimize the discharge of seepage discharge and to ensure economic feasibility by wider installation of the relief wells.

The Construction Method for Virtual Drone System (가상 드론 시뮬레이터 구축을 위한 시스템 구성)

  • Lee, Taek Hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.124-131
    • /
    • 2017
  • Recently, drone is extending its range of usability. For example, the delivery, agriculture, industry, and entertainment area take advantage of drone mobilities. To control real drones, it needs huge amount of drone control training steps. However, it is risky; falling down, missing, destroying. The virtual drone system can avoid such risks. We reason that what kinds of technologies are required for building the virtual drone system. First, it needs that the virtual drone authoring tool that can assemble drones with the physical restriction in the virtual environment. We suggest that the drone assembly method that can fulfill physical restrictions in the virtual environment. Next, we introduce the virtual drone simulator that can simulate the assembled drone moves physically right in the virtual environment. The simulator produces a high quality rendering results more than 60 frames per second. In addition, we develop the physics engine based on SILS(Software in the loop simulation) framework to perform more realistic drone movement. Last, we suggest the virtual drone controller that can interact with real drone controllers which are commonly used to control real drones. Our virtual drone system earns 7.64/10.0 user satisfaction points on human test: the test is done by one hundred persons.

Effects of Impact of Climate Change on Livestock Productivity - For bullocks, dairy, pigs, laying hens, and broilers - (기후변화가 축산 생산성에 미치는 영향 -거세우, 낙농, 양돈, 산란계, 육계를 대상으로-)

  • Lee, H.K.;Park, H.M.;Shin, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The global impact of climate change on agriculture is now increasing. The purpose of this study was to investigate the effect of climate change on livestock productivity. The variables that have the greatest influence on climate change factors were examined through previous studies and expert surveys. We also used the actual productivity data of livestock farmers to investigate the relationship with climate change. In order to evaluate the climate for changes in livestock productivity, national representative data (such as bullocks, dairy, pigs, laying hens, and broilers) were surveyed in Korea. Also, to select and classify evaluation indexes, we selected climate change factor variables as prior studies and studied the weighting factor of climate variable factors. In this study, the researchers of industry, academia, and farmers in the livestock sector conducted questionnaires on the indicators of vulnerability to climate change using experts, and then weighed the selected indicators using the hierarchical analysis process (AHP). In order to verify the validity of the evaluation index, was examined using domestic climate data (temperature, precipitation, humidity, etc.). Correlation and regression analysis were performed. The empirical relationship between climate change and livestock productivity was examined through this study. As a result, we used data with high reliability of statistical analysis and found that there are significant variables.