• Title/Summary/Keyword: 제어댐퍼

Search Result 272, Processing Time 0.022 seconds

Modified Decentralized Bang-Bang Control Seismically Excited Structures Using MR Dampers (지진하중을 받는 구조물의 수정된 분산뱅뱅 제어기법을 이용한 MR Damper 제어)

  • Cho, Sang-Won;Kim, Byung-Wan;Kim, Woon-Hak;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.417-423
    • /
    • 2002
  • Magnetorheological(MR) 댐퍼는 적은 용량의 전력을 사용하고 반응속도가 빠른 장점 때문에 구조물의 내진제어에 적당하여, 근래에 주목받고 있는 새로운 장치이다. MR 댐퍼는 반능동 제어 장치로써, 능동 질량감쇠기와는 다른 특성을 갖는다. 즉 필요한 제어력을 제어신호로 직접 생성해 낼 수 없는 대신에 MR 댐퍼의 입력전원을 제어하여 간접적으로 제어한다. 따라서 MR 댐퍼의 반능동 제어장치로써의 특성을 고려하는 효과적인 제어기법이 요구된다. 그러므로 본 연구에서는 지진에 대한 구조물의 응답을 줄이기 위해서, MR댐퍼를 제어할 수 있는 반능동 제어기법을 Lyapunov 안정성 이론을 바탕으로 제안하고자 한다. 제안방법을 검증하기 위해, 전단형 MR 댐퍼를 1층과 2층에 설치한 수치예제를 수행하였다.

  • PDF

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Active Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교 케이블 진동저감을 위한 능동제어시스템)

  • Hwang, In-Ho;Jeong, Cheol-Oh;Lee, Jong-Han;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2007
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridge. External dampers attached to the cables have become widely accepted as an effective means for stay-cable vibration suppression. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need be attached near the end of cables for aesthetic reasons. A recent study by the authors proposed that a movable anchorage system is replaced direct fixed support of the cable with a support through a bearing and damper. This paper extends the previous work by adding active control system to mitigate the cable vibration. The response of a cable with the proposed active control system is obtained and then compared to those of the cable with and without an external passive damper. The results show that the active control system can provide superior protection than the passive control system for a cable vibration.

변풍량 공조 시스템의 제어

  • 주영덕
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.2
    • /
    • pp.39-45
    • /
    • 2000
  • 1970년대부터 사용된 변풍량 공조 시스템 (Variable Air Volume System)은 실내 부하 변동에 따라 급기 온도를 일정하게 유지시키고 실별, 존별 송풍량을 변화시켜 실온을 제어하는 방식으로, 에너지 절약, 개별 제어 등의 장점 때문에 적용이 확대되었고 특히 단일덕트 변풍량 공조 시스템은 이러한 이유 때문에 많은 건물에 적용되고 있다. 그러나 현 제어시스댐의 풍량 측정의 문제점과 공조기내에서 풍량변화 및 급/배기 댐퍼의 개도 변경으로 인한 환기 댐퍼의 비선형 특성을 고려하지 않고 제어하기 때문에 외기량 확보를 정확히 유지 못하는 실정이다. 따라서 단일덕트 변풍량 시스템의 환기댐퍼 및 급기, 환기 팬의 제어 방식의 종류와 특성 및 문제점에 대하여 설명하고자 한다.

  • PDF

Reducing bi-directional response of SDOF building by new type Tuned Liquid Damper (새로운 형태의 동조액체댐퍼에 의한 단자유도 건물의 양방향 응답제어)

  • Lee, Hye-Ri;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.778-782
    • /
    • 2010
  • 본 논문에서는 TLD와 TLCD를 사용한 하나의 액체 감쇠기를 이용하여 건물의 양방향 응답 제어를 연구하였다. 초고층 건물이 풍하중을 받을때는 풍방향과 풍직각방향으로 진동하여 두 개의 댐퍼를 필요로 한다. 이 논문에서 제안된 댐퍼는 건물의 양방향 응답을 하나의 감쇠기로 제어할 수 있다는 장점이 있다. 이 댐퍼의 TLCD는 건물의 주축방향으로 TLD는 주축으로 직각되는 다른 방향으로 거동을 하게 된다. 실험을 통해 양방향 감쇠기를 사용하여 건물의 양방향 응답제어를 증명하였다. 첫 번째로 양방향 감쇠기에 의한 건물의 응답제어를 알기 위한 진동대 실험을 실시하였다. 진동대 가속도를 입력으로 하고 단자유도 건물의 가속도를 출력으로 하는 전달함수를 통해 결과를 나타내었다. 실험 결과 이 연구에서 제안된 감쇠기는 단자유도 건물의 양방향 응답을 제어하였고, 비틀림 응답도 제어 하였다.

  • PDF

Vibration Control of Flexible Structures Using ER Dampers (ER 댐퍼를 이용한 유연구조물의 진동제어)

  • 최승복;이재홍
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.313-323
    • /
    • 1998
  • This paper addresses a sliding mode control of vibration in a flexible structure using ER(electro-rheological) dampers. A clamped-clamped flexible structure system supported by two short columns is considered. Three ER dampers to be operated in shear mode are designed on the basis of Bingham model of the arabic gum-based ER fluid, and attached to the flexible beam structure. After deriving the governing equation of motion and associated boundary conditions, a sliding mode controller is formulated to effectively suppress the vibration of the beam structure caused by sinusoidal and random excitations. In the formulation of the controller, parameter variations such as natural frequency deviation are treated to take into account the robustness of control system. The effectiveness of the proposed control system is confirmed by both simulation and experimental results.

  • PDF

Performance Evaluation of Seismic Vibration Control of Asymmetrical Cable-Stayed Bridge Using MR Damper (MR 댐퍼를 이용한 비대칭 사장교의 지진 진동제어 성능평가)

  • Heo, Gwanghee;Kim, Chunggil;Gong, Yeong I
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.729-737
    • /
    • 2014
  • A study has been carried out that effectively controls the vibration of asymmetric cable-stayed bridges caused by earthquakes with MR dampers. In order to enhance the practical serviceability of MR dampers, an asymmetric cable-stayed bridge structure has been designed and produced, and a MR damper has been produced so as to have this bridge structure controlled appropriately. An experiment that controls vertical and horizontal vibrations has been carried out by exciting the asymmetric cable-stayed bridge in the horizontal direction with the El-centro seismic wave. The control performance of the MR damper has been evaluated under the five control conditions in the experiments of vibration control in each direction. As a result of the experiment, MR dampers were proved to control vibrations more effectively when either Lyapunov control algorithm or Clipped-optimal control algorithm was used to control vibrations of the asymmetric cable-stayed bridge caused by earthquakes. In addition, different controlling effects were found in vibration controls in vertical and horizontal directions due to the asymmetry of the structure and the horizontal excitation. With such controlling effects, semi-active MR dampers are evaluated to effectively control vibrations caused by earthquakes in flexible and asymmetric structures such as asymmetric cable-stayed bridges.

The Development of Flow Control Ventilation Damper According to the Pressure Variation of Smoke Control Room (제연구역의 압력변화에 따른 풍량제어 배출댐퍼 개발)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.69-74
    • /
    • 2018
  • This study developed a ventilation damper that can control flow rate according to pressure differential variation of the smoke control room in order to improve problems related to existing smoke management systems and maximizing performance of smoke management systems. The development damper was tested for verification of utility and performance. The supply flow of the developed ventilation damper was increased by about 1 to 5%. The results prove the effectiveness of the flow control ventilation damper by providing stable flow over the designed flow of the fan in the smoke control room. In addition, the study acquired the original technology for a flow control ventilation damper.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Modeling of MR Damper Landing Gear Considering Incompletely Developed Fluid Flow (불완전 발달 유체 유동을 고려한 MR댐퍼 착륙장치 모델링)

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • A semi-active MR damper landing gear is a damper that generates a fluid damping force and a magnetic field control damping force when the MR fluid passes through annular flow paths. In the case of MR fluid passing through annular flow paths, an incompletely developed flow inevitably occurs, causing an error in calculating damper inner forces including the fluid damping force. This error results in an inaccurate design of damper structural parameters and control gain selection, resulting in deterioration of dynamic characteristics and shock absorption performance of the landing gear. In this paper, we derived a mathematical model of an MR damper landing gear considering additional damping force generated in the entrance region of annular flow paths of the MR damper. If the mathematical modeling derived from this paper is applied to the design and optimization process of an MR damper landing gear, excellent performance of the MR damper landing gear is expected.