• Title/Summary/Keyword: 제약성 최적화

Search Result 365, Processing Time 0.028 seconds

Application of Response Surface Methodology for the Optimization of Process in Food Technology (반응표면분석법을 이용한 식품제조프로세스의 최적화)

  • Sim, Chol-Ho
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.97-115
    • /
    • 2011
  • A review about the application of response surface methodology in the optimization of food technology is presented. The theoretical principles of response surface methodology and steps for its application are described. The response surface methodologies : three-level full factorial, central composite, Box-Behnken, and Doehlert designs are compared in terms of characteristics and efficiency. Furthermore, recent references of their uses in food technology are presented. A comparison between the response surface designs (three-level full factorial, central composite, Box-Behnken and Doehlert design) has demonstrated that the Box-Behnken and Doehlert designs are slightly more efficient than the central composite design but much more efficient than the three-level full factorial designs.

Multi-objective Optimization Model for Tower Crane Layout Planning in Modular Construction (모듈러 건축의 타워크레인 배치계획 수립을 위한 다중 최적화 모델 개발)

  • Yoon, Sungboo;Park, Moonseo;Jung, Minhyuk;Hyun, Hosang;Ahn, Suho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.36-46
    • /
    • 2021
  • With an increasing trend toward high-rise modular construction, the simultaneous use of tower cranes at a modular construction site has recently been observed. Tower crane layout planning (TCLP) has a significant effect on cost, duration, safety and productivity of a project. In a modular construction project, particularly, poor decision about the layout of tower cranes is likely to have negative effects like additional employment of cranes and redesign, which will lead to additional costs and possible delays. It is, therefore, crucial to conduct thorough inspection of field conditions, lifting materials, tower crane capacity to make decisions on the layout of tower cranes. However, several challenges exist in planning for a multi-crane construction site in terms of safety and collaboration, which makes planning with experience and intuition complicated. This paper suggests a multi-objective optimization model for selection of the number of tower cranes, their models and locations, which minimizes cost and conflict. The proposed model contributes to the body of knowledge by showing the feasibility of using multi-objective optimization for TCLP decision-making process with consideration of trade-offs between cost and conflict.

Pallet Size Optimization for Special Cargo based on Neighborhood Search Algorithm (이웃해 탐색 알고리즘 기반의 특수화물 팔레트 크기 최적화)

  • Hyeon-Soo Shin;Chang-Hyeon Kim;Chang-Wan Ha;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.250-251
    • /
    • 2023
  • The pallet, typically a form of tertiary packaging, is a flat structure used as a base for the unitization of goods in the supply chain. In addition, standard pallets such as T-11 and T-12 are used throughout the logistics industry to reduce the cost and enhance the efficiency of transportation. However, in the case of special cargo, it is impossible to handle such cargo using a standard pallet due to its size and weight, so many have developed and are now using their customized pallet. Therefore, this study suggests a pallet size optimization method to calculate the optimal pallet size, which minimizes the loss of space on a pallet. The main input features are the specifications and the storage quantity of each cargo, and the optimization method that has modified the Neighborhood Search Algorithm calculates the optimal pallet size. In order to verify the optimality of the developed algorithm, a comparative analysis has been conducted through simulation.

  • PDF

A Design Methodology for CNN-based Associative Memories (연상 메모리 기능을 수행하는 셀룰라 신경망의 설계 방법론)

  • Park, Yon-Mook;Kim, Hye-Yeon;Park, Joo-Young;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.463-472
    • /
    • 2000
  • In this paper, we consider the problem of realizing associative memories via cellular neural network(CNN). After introducing qualitative properties of the CNN model, we formulate the synthesis of CNN that can store given binary vectors with optimal performance as a constrained optimization problem. Next, we observe that this problem's constraints can be transformed into simple inequalities involving linear matrix inequalities(LMIs). Finally, we reformulate the synthesis problem as a generalized eigenvalue problem(GEVP), which can be efficiently solved by recently developed interior point methods. Proposed method can be applied to both space varying template CNNs and space-invariant template CNNs. The validity of the proposed approach is illustrated by design examples.

  • PDF

A Web-based Spatial Layout Planning System with Constraint Satisfaction Problems (웹 환경 하에서의 제약 만족 기법에 의한 공간 계획 시스템)

  • Jung, Jae-Eun;Jeon, Seung-Bum;Jo, Geun-Sik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.216-224
    • /
    • 2000
  • The spatial layout planning system allocates rectangular resources in the limited space according to user requirements, This system also can optimizes the spatial allocation problem to maximize the user's requirement. The spatial layout planning Problems for this system can be solved by searching a wide area of space since this problem entails the non-polynomial algorithm. By accommodating the user's dynamic requirements, the modification of a specific space and the redesign of the whole area can be accomplished. In this paper, the spatial layout planning problem is solved efficiently with a resource allocation method based on CSP. The dynamic constraints by adding user requirements are accommodated through the intelligent user Interface. The 3-D layout on the web environment by using VRML is also shown for providing for the visual verification of the 2-D layout and, thereafter, the additional modification of the 2-D layout.

  • PDF

Reservoir Management in Flood Period with Chance Constrained LP (위험도제약(危險度制約) 선형계획법(線形計劃法)에 위한 홍수기(洪水期) 저수지운영(貯水池運營))

  • Lee, Kil Seong;Kang, Bu Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.139-151
    • /
    • 1992
  • A reservoir operation model was established under the varying restricted water level(r.w.l.) subject to the inflow distributions in flood period. The optimization model consists of 2 sub-models. One model minimizes deviations of releases from the expected release and the other minimizes capacity requirement for flood control. In order to make deterministic equivalents, the inflow distribution of reservoir is assumed to be 2-parameter Lognormal, and its parameters are estimated by the maximum likelihood method. The model is applied to joint operation of Soyang and Chungju dam. The results show that Soyang was designed for larger flood event than that for Chungju. The operation under the varying r.w.l. turns out to be more effective than one under the uniform r.w.l. Such effect is more obvious at Chungju compared with Soyang. Release pattern shows diminishing and delaying effect in a period of high inflows and larger discharges than actual in a period of low inflows.

  • PDF

High-resolution image restoration based on image fusion (영상융합 기반 고해상도 영상복원)

  • Shin Jeongho;Lee Jungsoo;Paik Joonki
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-246
    • /
    • 2005
  • This paper proposes an iterative high-resolution image interpolation algorithm using spatially adaptive constraints and regularization functional. The proposed algorithm adapts adaptive constraints according to the direction of..edges in an image, and can restore high-resolution image by optimizing regularization functional at each iteration, which is suitable for edge directional regularization. The proposed algorithm outperforms the conventional adaptive interpolation methods as well as non-adaptive ones, which not only can restore high frequency components, but also effectively reduce undesirable effects such as noise. Finally, in order to evaluate the performance of the proposed algorithm, various experiments are performed so that the proposed algorithm can provide good results in the sense of subjective and objective views.

A Study on Shape Optimization of Plane Truss Structures (평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관한 구연(究研))

  • Lee, Gyu won;Byun, Keun Joo;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.49-59
    • /
    • 1985
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the Cross sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures which can eliminate the above mentioned limitations, is developed in this study. The algorithm developed utilizes the two-phases technique. In the first phase, the cross sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Raphson method. In the second phase, the geometric shape is optimized utilizing the unidirctional search technique of the Rosenbrock method which make it possible to minimize only the objective function. The algorithm developed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examme its applicability and stability. The numerical comparisons show that the two-phases algorithm developed in this study is safely applicable to any design criteria, and the convergency rate is very fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation (라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.37 no.1
    • /
    • pp.65-84
    • /
    • 2023
  • The method of Lagrange multipliers, one of the most fundamental algorithms for solving equality constrained optimization problems, has been widely used in basic mathematics for artificial intelligence (AI), linear algebra, optimization theory, and control theory. This method is an important tool that connects calculus and linear algebra. It is actively used in artificial intelligence algorithms including principal component analysis (PCA). Therefore, it is desired that instructors motivate students who first encounter this method in college calculus. In this paper, we provide an integrated perspective for instructors to teach the method of Lagrange multipliers effectively. First, we provide visualization materials and Python-based code, helping to understand the principle of this method. Second, we give a full explanation on the relation between Lagrange multiplier and eigenvalues of a matrix. Third, we give the proof of the first-order optimality condition, which is a fundamental of the method of Lagrange multipliers, and briefly introduce the generalized version of it in optimization. Finally, we give an example of PCA analysis on a real data. These materials can be utilized in class for teaching of the method of Lagrange multipliers.