Application of Response Surface Methodology for the Optimization of Process in Food Technology

반응표면분석법을 이용한 식품제조프로세스의 최적화

  • Sim, Chol-Ho (Department of Fine Chemistry & New Materials, Sangji University)
  • 심철호 (상지대학교 정밀화학신소재학과)
  • Received : 2010.01.25
  • Accepted : 2010.12.26
  • Published : 2011.05.30

Abstract

A review about the application of response surface methodology in the optimization of food technology is presented. The theoretical principles of response surface methodology and steps for its application are described. The response surface methodologies : three-level full factorial, central composite, Box-Behnken, and Doehlert designs are compared in terms of characteristics and efficiency. Furthermore, recent references of their uses in food technology are presented. A comparison between the response surface designs (three-level full factorial, central composite, Box-Behnken and Doehlert design) has demonstrated that the Box-Behnken and Doehlert designs are slightly more efficient than the central composite design but much more efficient than the three-level full factorial designs.

이 총설에서는 반응표면분석법을 이용하여 식품제조프로세스를 최적화하는 방법에 대하여 검토하였다. 반응표면분석을 수행하기 위한 절차와 반응표면분석의 필수적인 기본이론을 설명하였고, 반응표면분석법 중에서도 대부분 사용되는 2차 실험계획법(3인자 완전요인, 중심합성, Box-Behnken, 및 Doehlert 계획법)들에 대한 장단점 및 효율성을 비교하였다. 식품제조프로세스를 최적화하는데 반응표면분석법을 적용하기 위해서는 우선 실험계획을 선택하고, 적절한 모델함수를 적합화한 다음, 적합화된 모델의 질 및 실험데이터와의 예측의 정확성을 평가할 필요가 있다. 식품제조프로세스를 최적화할 때 일부요인계획, 완전요인계획 및 Plackett-Burman 계획 등과 같은 실험계획법을 사용하여 중요한 실험인자를 일차적으로 스크린한 다음, 2차 실험계획법을 선택하는 것이 바람직하다. 실제적으로 최적실험조건을 찾기 위해서는 F-test, 수정 $R^2$ 등과 같은 분산분석을 사용하여 모델을 적합화하는 것이 바람직하다. Doehlert 계획과 Box-Behnken 계획은 중심합성계획법보다 좀 더 효율적이며, 최근에는 이 계획들을 적용한 문헌의 수가 증가하고 있는 추세이다. 더욱이 이 계획들은 3수준 완전요인계획법보다는 비교할 필요도 없이 훨씬 더 효율적이다. Box-Behnken설계는 식품분야에서와 같이 극한조건(즉, 인자들이 동시에 가장 높거나 혹은 가장 낮은 수준의 실험 조건)하에서 실험을 하는 것을 피하고자 할 때 유용하다. Doehlert 계획에서는 각 인자들의 수준(level)이 다르기 때문에, 몇몇 인자들이 가격적인 면에서 그리고(혹은) 장비사용에 제약을 받는 제한이 있다든지 혹은 인자의 중요도에 따라 수준의 수를 조절해야 할 필요가 있을 때에는 Doehlert 계획이 아주 유용하다. 종래에는 반응표면분석법의 2차 회귀모델 실험계획법 중에서 다른 계획법(Box-Behnken 계획 및 Doehlert 계획)에 비해 중심합성계획법을 압도적으로 많이 적용해 왔다. 그러나 Box-Behnken 계획 및 Doehlert 계획은 중심합성계획법보다 장점이 많기 때문에, 향후에는 Doehlert 계획과 Box-Behnken 계획을 사용하여 식품제조프로세스를 최적화하는 쪽으로 초점이 맞추어 지리라고 전망한다.

Keywords

Acknowledgement

Supported by : 상지대학교

References

  1. Aggarwal A, Singh H. 2005. Optimization of machining techniques: A retrospective and literature review. Sadhana 30(part 6): 699-711. https://doi.org/10.1007/BF02716704
  2. Alamprese C, Datei L, Semeraro Q. 2007. Optimization of processing parameters of a ball mill refiner for chocolate. J. Food Eng. 83: 629-636. https://doi.org/10.1016/j.jfoodeng.2007.04.014
  3. An SW, Choi JY, Cha MW, Park JW. 2010. Adsorption characterization of Cd by coal fly ash using response surface methodology( RSM). J. Korean Geo-Env. Soc. 11(1): 19-26.
  4. Aragao NM, Veloso MCC, Bispo MS, Ferreira SLC, Andrade JB. 2005. Multivariate optimisation of the experimental conditions for determination of three methylxanthines by reversed-phase highperformance liquid chromatography. Talanta. 67: 1007-1013. https://doi.org/10.1016/j.talanta.2005.04.066
  5. Araujo P, Couillard F, Leirnes E, Ask K, Bokevoll A, Froyland L. 2006. Experimental design considerations in quantification experiments by using the internal standard technique: Cholesterol determination by gas chromatography as a case study, J. Chromatogr. A. 1121: 99-105. https://doi.org/10.1016/j.chroma.2006.03.119
  6. Atkinson AC, Tobias RD. 2008. Optimal experimental design in chromatography. J. Chromatogr. A. 1177:1-11. https://doi.org/10.1016/j.chroma.2007.11.045
  7. Ban YJ, Baik MY, Hahm YT, Kim HK, Kim BY. 2010a. Optimization of processing conditions for making a black ginger and design mixture for black ginger drinks. Food Eng. Prog. 14(2): 112-117.
  8. Ban YJ, Yang BW, Baik MY, Hahm YT, Kim BY. 2010b. Optimization of the manufacturing process for Black ginseng. J. Korean Soc. Appl. Biol. Chem., 53(1): 71-77.
  9. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, EscaleiraL A. 2008. Response surface methodology as a tool for optimization in analytical chemistry. Talanta. 76: 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  10. Bezerra MA, Bruns RE, Ferreira SLC. 2006. Statistical designprincipal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES. Anal. Chim. Acta. 580: 251- 257. https://doi.org/10.1016/j.aca.2006.07.056
  11. Box GEP, Behnken DW. 1960. Some new three level designs for the study of quantitave variables. Technometrics. 2(4): 455-475. https://doi.org/10.1080/00401706.1960.10489912
  12. Cardenes L, Martin-Calero A, Ayala JH, Gonzalez V, Afonso AM. 2006. Experimental design optimization of solid-phase microextraction conditions for the determination of Heterocyclic aromatic amines by high-performance liquid chromatography. Anal. Lett. 39: 405-423. https://doi.org/10.1080/00032710500477217
  13. Cho KJ, Baik MY, Choi YJ, Kim BY. 2008. Preparation of functional solid tablets using oyster hydrolysate and plant extracts, Food Eng. Prog. 12(3): 163-169.
  14. Cho IH, Lee NH, Chang SW, An SW, Yonn YH, Zoh KD. 2006. Analysis of characteristics and optimization of photo-degradation condition of reactive orange 16 using a Box-Behnken method. J. of KSEE. 28(9): 917-925.
  15. Choi MS, Shin JK, Chung MS. 2007. Optimization of conditions for manufacturing vegetable juice using pulsed electric field (PFF) technique. Food Eng. Prog. 11(3): 216-224.
  16. Davies MP, Biasi VD, Perrett D. 2004. Approaches to the rational design of molecularly imprinted polymers. Anal. Chim. Acta. 504: 7-14. https://doi.org/10.1016/S0003-2670(03)00812-2
  17. Doehlert DH. 1970. Uniform shell designs, applied statistics, 19: 231-239. https://doi.org/10.2307/2346327
  18. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, Silva EGP, Portugal LA, Reis PS, Souza AS, Santos WNL. 2007a. Box-Behnken design; An alternative for the optimization of analytical methods. Anal. Chim. Acta. 597: 179-186. https://doi.org/10.1016/j.aca.2007.07.011
  19. Ferreira SLC, Bruns RE, Silva EGP, Santos WNL, Quintella CM, David JM, Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB. 2007b. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A. 1158: 2-14. https://doi.org/10.1016/j.chroma.2007.03.051
  20. Ferreira SLC, Santos WNL, Quintella CM, Neto BB, Bosque- Sendra JM. 2004. Doehlert matrix: a chemometric tool for analytical chemistry-review. Talanta. 63: 1061-1067. https://doi.org/10.1016/j.talanta.2004.01.015
  21. Ferreira SLC, dos Santos WNL, Bezerra MA, Lemos VA, Bosquo- Sendra JM. 2003. Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by frame atomic absortion spectrometry. Anal. Bioanal. Chem. 375: 443-449.
  22. Garcia-villar N, Saurina J, Hernández-Cassou S. 2006. High-Performance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure. Anal. Chim. Acta. 575: 97-105. https://doi.org/10.1016/j.aca.2006.05.074
  23. Ghafoor K, Choi YH. 2009. Optimization of ultrasound-assisted extraction for antiradical activities of peel and seed extracts of Campbell early grapes. Food Eng. Prog. 13(1): 32-37.
  24. Gilmour SG. 2006. Response surface designs for experiments in bioprocessing. Biometrics. 62: 323-331. https://doi.org/10.1111/j.1541-0420.2005.00444.x
  25. Guerrero ED, Marin RN, Mejias RC, Barroso CG. 2006. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A. 1104: 47- 53. https://doi.org/10.1016/j.chroma.2005.12.006
  26. Han MR, Kim AJ, Chung KS, Lee SJ, Kim MH. 2005. Optimization for manufacturing soybean curd adding mulbery leaf powder and extract. Food Eng. Prog. 9(4): 276-282.
  27. Hernandez-Borges J, Rodriguez-Delgado MA, Garcìa-Montelongo FJ, Cifuentes A. 2005. Analysis of pesticides in soy milk combining solid-phase extraction and capillary electrophoresis-mass spectrometry. J. Sep. Sci. 28: 948-956. https://doi.org/10.1002/jssc.200500014
  28. Hill WJ, Hunter WG. 1966. A review of response surface methodology: A literature Review, Technometrics, 8: 571-590. https://doi.org/10.2307/1266632
  29. Hong KJ, Jeon KK, Cho YS, Choi DH, Lee SJ. 2000. A Study on the construction of response surfaces for design optimization, Trans. of the KSME(A). 24(6): 1408-1418.
  30. Hows MEP, Perrett D Kay J. 1997. Optimisation of a simultaneous separation of sulphonamides, dihydrofolate reductase inhibitors and $\beta$-lactam antibiotics by capillary electrophoresis. J. Chromatogr. A. 768: 97-104. https://doi.org/10.1016/S0021-9673(97)00107-6
  31. Hwang SK, Hong JT, Jung KH, Chang BC, Hwang KS, Shin JH, Yim SP, Yoo SK. 2008. Process optimization of dextran production by Leuconostoc sp. strain YSK. isolated from fermented Kimchi. J. Life Sci. 18(10): 1377-1383. https://doi.org/10.5352/JLS.2008.18.10.1377
  32. Im SJ, Jun JY, Choi YH. 2007. Optimization for the extraction process of effective components from paprica. Food Eng. Prog. 11(1): 31-37.
  33. Jalbani N, Kazi TG, Arain BM, Jamali MK, Afridi HI, Sarfraz RA. 2006. Application of factorial design in optimization of ultrasonic-assisted extraction of aluminum in juices and soft drinks. Talanta. 70: 307-314. https://doi.org/10.1016/j.talanta.2006.02.045
  34. Jeon JY, Jo IH, Kyung HK, Kim HA, Lee CM, Choi YH. 2010. Optimization of solvent extraction process on the active functional components from chinese quince. Food Eng. Prog. 14(2): 92-98.
  35. Jeon JY, Park JH, Kim SH, Choi YH. 2009. Optimization of $\beta$-glucan extraction process from rice bran and rice germ using response surface methodology. Food Eng. Prog. 13(1): 8-15.
  36. Jeon JY, Ha SY, Kim YJ, Lee JE, Choi YH. 2008. Optimization of hot-water extraction process of functional components from Glycyrrhiza uralensis using a response surface methodology. Food Eng. Prog. 12(4): 289-296.
  37. Joo NM, Lee SM, Jeong HS. 2009. Optimized recipe for cookies with dried danggue powder determined by response surface methology, J East Asian Soc. Dietary Life. 19(3): 421-429.
  38. Juntachote T, Berghofer E, Bauer F, Siebenhadl S. 2006. The application of response surface methodology to the production of phenolic extracts of lemon grass, galangai, holy basil and rosemary, Int. J. Food Sci. Technol. 41: 121-133. https://doi.org/10.1111/j.1365-2621.2005.00987.x
  39. Kim DS, Park YS. 2010. Application of the central composite design and response surface methodology to the treatment of dye using electrocoagulation/flotation process, J. Korean Soc. Water Qual. 26(1): 35-43.
  40. Kim MY, Kim JM, Lee YJ, Heo OS, Kim MR. 2009. Optimization of spirulina added korean rice cake(Garaeduk) using response surface methodology, J East Asian Soc. Dietary Life 19(1): 38-44.
  41. Kim DS, Park YS. 2009. Optimization of the turbidity removal conditions from $TiO_{2}$ solution using a response surface methodology in the electrocoagulation/flotation process, J. Env. Health Sci. 35(6): 500-508.
  42. Kim HR, Seog EJ, Lee JH. 2007. Effects of onion powder and baking temperature on the physicochemical properties of cookies, J. Food Sci. Nutr. 12: 160-166. https://doi.org/10.3746/jfn.2007.12.3.160
  43. Kim SI, Hong J.P. 2005. Optimum design using response surface methodology. World of Electricity 54(9): 24-28.
  44. Lee SI. 2010. Drug interaction: focusing on response surface models. Korean J. Anesthesiol. 58(5): 421-434. https://doi.org/10.4097/kjae.2010.58.5.421
  45. Lee JH, Kim DE, Park CH, Kang WS. 2008. Extraction-cooking of tartary buckwheat (Fagopyrum totaricum) flour using a twinscrew extruder, Food Eng. Prog. 12(2): 107-114.
  46. Lee SH. 2008. Data Analysis of Engineering Statistics using Minitab, revision, Iretec Inc., Kunpo, ROK, pp.647-778.
  47. Lee KA, Jung JE, Choi YH. 2007. Optimization of microwaveassisted extraction process of hericium erinaceus, Food Eng. Prog. 11(3): 195-202.
  48. Lee SM, Jung HA, Joo NM. 2006. Optimization of iced cookie with the addition of dried red ginseng powder. Korean J. Food Nutr. 19(4); 448-459.
  49. Lee JK, Ryu GH. 2006a. Effect of extrusion process variables on rutin content in buckwheat, Food Eng. Prog. 10(4): 280-285.
  50. Lee MS, Ryu GH. 2006b. Optimization of hot water extraction conditions for cod byproduct by response surface methodology analysis, Food Eng. Prog. 10(4): 248-255.
  51. Lee C. 2004. Optimization for extrusion-cooking of rice-isp-file fish mixture by response surface methodology J. Korean Soc. Food Sci. Nutr. 33(10): 1742-1747. https://doi.org/10.3746/jkfn.2004.33.10.1742
  52. Lee KD, Lee JE, Kwon CH. 2000. Application of response surface methodology in food chemistry Food Sci. Ind. 33(1): 33-45.
  53. Lomillo MAA, Campo FJ, Pascual FJM. 2006. Preliminary contribution to the quantification of HMF in honey by electrochemical biosensor chips. Electroanalysis. 18(24): 2435-2440. https://doi.org/10.1002/elan.200603698
  54. Martendal E, Budziak D, Carasek E. 2007. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples, J. Chromatogr. A. 1148: 131-136. https://doi.org/10.1016/j.chroma.2007.02.079
  55. Martinez-Bustos F, López-Soto M, Martìn-Martìnez ES, Zazueta- Morales JJ, Velez-Medina JJ. 2007. Effects of high energy milling on some functional properties of jicama starch and cassava starch, J. Food Eng. 78: 1212-1220. https://doi.org/10.1016/j.jfoodeng.2005.10.043
  56. Martinez-Urunuela A, González-Sáiz JM, Pizarro C. 2004. Optimisation of a headspace solid-phase microextraction method for the direct determination of chloroanisoles related to cork taint in red wine, J. Chromatogr. A. 1056: 49-56.
  57. Mead R, Pike DJ. 1975. A review of response surface methodology from a biometrics view point. Biometrics 31: 803-851. https://doi.org/10.2307/2529809
  58. Mejias RC, Marin RN, Moreno MVG, Barroso CG. 2003. Optimisation of headspace solid-phase microextraction for the analysis of volatile phenols in wine. J. Chromatogr. A. 995: 11-20. https://doi.org/10.1016/S0021-9673(03)00541-7
  59. Mok CK. 2007. Texture changes of soybean paste(Doenjang) by heat treatment. Food Eng. Prog. 11(2): 84-88.
  60. Momenbeik F, Khorasani JH. 2006. Separation and determination of sugars by reversed-phase high-performance liquid chromatography after pre-column microwave-assisted derivatization. Anal. Bioanal Chem. 384: 844-850. https://doi.org/10.1007/s00216-005-0207-2
  61. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM. 2004. Response surface methodology; A Retrospective and literature survey, J. Qual. Technol. 36(1): 53-77.
  62. Myers RH, Kliuri AI, Carter WH. 1989. Response surface methodology: 1966-1988, Technometrics 31: 137-157.
  63. Nanda V, Singh S, Raina CS, Jindal N, Singh K. 2004. Optimization of the process variables for the preparation of processed paneer using response surface methodology. Eur. Food Res. Technol. 218: 529-534.
  64. Navalon A, Prieto A, Araujo L, Vìlchez JL. 2002. Determination of oxadiazon residues by headspace solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A. 946: 239-245. https://doi.org/10.1016/S0021-9673(01)01523-0
  65. Park JW, Kim HS, Park IB, Shin GW, Lee YJ, Jo Y.C. 2009. Optimization of ethanol extraction conditions from glasswort (Salicornia Herbacea) using response surface methodology. Korean J. Food Preserv. 16(3): 376-384.
  66. Park SH. 2005. Modern experimental design, revision, Minyoungsa, Seoul, ROK, pp.453-490.
  67. Ren J, Lin WT, Shen YJ, Wang JF, Luo XC, Xie MQ. 2008. Optimization of fermentation media for nitrite oxidizing bacteria using sequential design. Biores. Technol. 99: 7923-7927. https://doi.org/10.1016/j.biortech.2008.03.027
  68. Saccani G, Tanzi E, Mallozzi S, Cavalli S. 2005. Determination of niacin in fresh and dry cured pork products by ion chromatography: experimental design approach for the optimisation of nicotinic acid separation. Food Chem. 92: 373-379. https://doi.org/10.1016/j.foodchem.2004.10.007
  69. Santelli RE, Bezerra MA, SantAna OD, Cassella RJ, Ferreira SLC. 2006. Multivariate technique for optimization of digestion procedure by focussed microwave system for determination of Mn, Zn and Fe in food samples using FAAS, Talanta, 68: 1083- 1088. https://doi.org/10.1016/j.talanta.2005.07.010
  70. Seog EJ, Lee JH. 2007. Effects of prunus mume extract and red pepper powder on the sensory taste of Kochujang, Food Eng. Prog. 11(4): 321-325.
  71. Shih IL, Lin CY, Wu JY, Hsieh C. 2009. Production of antifungal lipopeptide from Bacillus subtilis in submerged fermentation using shake flask and fermentor. Korean J. Chem. Eng. 26(6): 1652-1661. https://doi.org/10.1007/s11814-009-0237-0
  72. Shin HH, Kang MJ, Cho HY, Kim BC, Cho EK. 2008. Optimization of extraction conditions for Houttuynia cordara Thunb and Saururus chinesis baill mixture by response surface methodology. Food Eng. Prog. 12(4): 247-255.
  73. Shin SM, Park KJ, Choi YS, Lee SK, Choi GJ, Kwon BS, Cho BR. 2007. Development of process analytical technology(PAT) for total quality innovation on pharmaceutical processes. J. Kor. Pharm. Sci. 37(6): 329-338.
  74. Shyy W, Papila N, Vaidyanathan R, Tucker K. 2001. Global design optimization for aerodynamics and rocket propulsion components. Prog. Aerospace Sci. 37: 59-118. https://doi.org/10.1016/S0376-0421(01)00002-1
  75. Simpson JR, Landman D, Giroux R, Zeisset M, Halll B, Rhew RD. 2008. Adapting second-order response surface design to specific needs. Quality and reliability engineering international. 24: 331-349. https://doi.org/10.1002/qre.900
  76. Stafieg A, Pyrzynska K, Ranz A, Lankmayr E. 2006. Screening and optimization of derivatization in heating block for the determination of aliphatic aldehydes by HPLC. J. Biochem. Biophys. Methods. 69: 15-24. https://doi.org/10.1016/j.jbbm.2006.02.009
  77. Sung RK. 2004. SAS/STAT Regression Analysis, 3rd ed., Freedom Academy, Paju, ROK, pp.234-282.
  78. Tarley CRT, Silveira G, Santos WNL, Matos GD, Silva EGP, Bezerra MA, Miró M, Ferreira SLC. 2009. Chemometric tools in electroanalytical chemistry : Methods for optimization based on factorial design and response surface methodology. Microchemical J. 92: 58-67. https://doi.org/10.1016/j.microc.2009.02.002
  79. Trinca LA, Gilmour SG. 1999. Difference variance dispersion graphs for comparing response surface designs with applications in food technology. Appl. Statist. 48(4): 441-455.
  80. Wang J, Wan W. 2009. Experimental design methods for fermentative hydrogen production: A review. Int. J. Hydrogen Energy, 34: 235-244. https://doi.org/10.1016/j.ijhydene.2008.10.008
  81. Weuster-Bolz D. 2000. Experimental design for fermentation media development: Statistical design or global search. J. Biosci. Bioeng. 90(5): 473-483.
  82. Yim YB, Park SH, An BJ, Kim YI. 2008. Practical experimental design, Freedom academy, Paju, ROK, pp.333-378.
  83. Yoon SR, Lee GD, Kim HK, Kwon JH. 2010. Monitoring of chemical changes in explosively puffed Ginseng and the optimization of puffing conditions. J. Ginseng Res. 34(1): 59-67. https://doi.org/10.5142/JGR.2010.34.1.059
  84. Youn KS, Hong JH, Choi, YH. 2006. Optimization for extraction of Sancho(Zanthoxylum schinifolium) extraction using supercritical carbon dioxide. Food Eng. Prog. 10(4): 207-213.
  85. Zhang X, Lu W, Yang P, Cong W. 2008. Application of response surface methodology to optimize the operation process for regeneration of acid and base using bipolar membrane electrodialysis. J. Chem. Technol. Biotechnol. 83: 12-19. https://doi.org/10.1002/jctb.1732