• Title/Summary/Keyword: 제동온도

Search Result 61, Processing Time 0.032 seconds

Study of Tribological Characteristics Between Metallic friction materials and Brake Disk (금속계 마찰재와 제동디스크 간의 마찰특성 연구)

  • Kim, Sang-Ho;Park, Hyung-Chul;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2080-2093
    • /
    • 2008
  • Disk brake system take charge of maximum braking energy among the mechanical brake systems for high speed train. For this reason, Metallic friction materials and heat resistant steel disk is adopted at disk brake system for high speed train. It was investigated tribological characteristics(friction coefficient, friction stability, wear rate and braking temperature) between some kinds of metallic friction materials and heat resistant steel disk. Cu-based friction material for high speed train have suitable tribological characteristics.

  • PDF

A Study on the Change of Mechanical Properties due to the Temperature Effect for the Braking Disc (철도차량용 제동디스크의 온도 변화 따른 재질의 특성 변화에 관한 연구)

  • Kim Jae-Hoon;Choi Kyung-Jin;Lee Chan-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.398-403
    • /
    • 2005
  • This study investigates the change of the temperature and mechanical properties of the braking disk for the railway vehicle. The average temperature is measured about $100^{\circ}C$ and the maximum temperature is measured over $200^{\circ}C$ by non-contact sensor from Seoul to Chun-an. In the $20^{\circ}C-300^{\circ}C$, the 0.2% offset yield strengths of the disk (GC25-30 material) are a little down to the reference value, but the linear relation of tensile test result is not find from the linear change of temperature. However, JIC values have the inverse proportion to the temperature, and the JIC value at $200^{\circ}C$ decrease 30.55% from the JIC. value of the room temperature. This result means that the crack length on the braking disk is rapidly increase at $200^{\circ}C$.

  • PDF

Improvement of Compression Ignition for Gasoline Fuel Injected in the Diesel Engine (디젤기관에 분사되는 가솔린연료의 압축착화성 향상)

  • Choi, Yoon-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this study, it made to run conventional single direct injection(DI) diesel engine, which adapted bulk combustion system not following spark ignition system without any ignition apparatus. It was heated and controlled inlet-air into conventional single DI diesel engine. The maximum value of brake thermal efficiency was at 35 region of air-fuel ratio. On the contrary, when the region of air-fuel ratio leaner than 35, brake thermal efficiency was decreased suddenly. And brake thermal efficiency was increased as much as inlet-air heating temperature increased. So, when air-fuel ratio was decreased and inlet-air heating temperature was higher, the engine was in optimal operation condition.

Design of Retarder Control Logic for Cooling System of Commercial Vehicle (상용차의 냉각 시스템을 고려한 리타더 제어로직 설계)

  • Lee, Chang-Kyu;Jeong, Jong-Kyu;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.668-669
    • /
    • 2016
  • The retarder as a hydraulic brake system in order to assist a service brakes in commercial vehicle is operated by automatic and manual mode due to driver. Braking energy by retarder operation is transmitted to the engine radiator of vehicle cooling system, passing through the retarder oil heat exchanger. At this moment, the retarder ECU performs the function that is controlled a braking torque with consideration for automatic and manual mode, temperature of retarder oil/water, engine coolant temperature, vehicle speed, and etc. In this paper, it deals with the design of retarder control logic and the results of retarder braking performance test regarding a cooling system of retarder and vehicle.

  • PDF

A Study on the Charging/Discharging Power Factor of Battery and Supercapacitor (배터리와 초고용량 커패시터의 충.방전 시 역률에 관한 연구)

  • Kim, Hyun-Jung;Jang, Jae-Hoon;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.114-116
    • /
    • 2009
  • 최근 계속되는 유가 상승과 화석에너지의 고갈 문제, 그리고 환경에 대한 관심 증가로 인해 자동차의 연비 개선 및 배기가스 저감을 위한 친환경 저연비 자동차 기술이 요구되고 있다. 이들 중 하이브리드 차량은 화학적 에너지 저장 장치에 차량 감속 시 회생 제동을 통해 전기 에너지를 저장하고 가속 시 이 에너지를 다시 사용함으로써 연비 개선과 배기가스 저감 효과를 가져 올 수 있다. 이를 위하여 회생 제동 시에 발생하는 에너지를 저장하기 위해 배터리 또는 초고용량 커패시터가 사용 된다. 본 논문에서는 두 에너지 저장 장치의 특성을 전기적인 등가회로 모델로 표현하고 주파수 응답을 통해 온도와 SOC에 따른 각각의 회로 정수를 산출할 뿐 아니라 이 때 주파수 변화에 따른 전압과 전류의 위상차와 역률에 관하여 알아보고자한다.

  • PDF

A Fault Detection Method for Solenoid Valves in Urban Railway Braking Systems Using Temperature-Effect-Compensated Electric Signals (도시철도차량 제동장치의 솔레노이드 밸브에 대한 전류기반 고장진단기법 개발)

  • Seo, Boseong;Lee, Guesuk;Jo, Soo-Ho;Oh, Hyunseok;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.835-842
    • /
    • 2016
  • In Korea, urban railway cars are typically maintained using the strategy of predictive maintenance. In an effort to overcome the limitations of the existing strategy, there is increased interest in adopting the condition-based maintenance strategy. In this study, a novel method is proposed to detect faults in the solenoid valves of the braking system in urban railway vehicles. We determined the key component (i.e., solenoid valve) that leads to braking system faults through the analysis of failure modes, effects, and criticality. Then, an equivalent circuit model was developed with the compensation of the temperature effect on solenoid coils. Finally, we presented how to detect faults with the equivalent circuit model and current signal measurements. To demonstrate the performance of the proposed method, we conducted a case study using real solenoid valves taken from urban railway vehicles. In summary, it was shown that the proposed method can be effective to detect faults in solenoid valves. We anticipate the outcome from this study can help secure the safety and reliability of urban railway vehicles.

Study on the Effect of Parameters on the Temperature Distribution of Brake Discs (제동 디스크의 온도분포에 미치는 파라미터의 영향에 관한 연구)

  • Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.761-766
    • /
    • 2007
  • A brake disc is one of the key elements of friction brake system. Thermal cracks of discs may shorten the lifetime of a disc and increase maintenance cost. Therefore, prevention of thermal cracks is very important to ensure the safety of the vehicle operation and reduction of maintenance cost. In this study, the influence of parameters on the friction heat of brake disc is examined.

  • PDF

The Frictional Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control (열차 제어의 연속 제동시 마찰특성과 온도분포)

  • Lee Si-Woo;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.101-106
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore. the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement or the thermocouple temperature and infrared camera.

  • PDF

The Korea Academia-industrial cooperation Society (상용 트럭의 공압 브레이크 응답 특성에 관한 연구)

  • Kim, Jin-Taek;Jung, Do-Gyun;Choi, Pan-Jin;Park, Won-Ki;Park, Chan-Hee;Ryuh, Beom-Sahng;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1969-1975
    • /
    • 2012
  • The air brake system used in heavy vehicle is very important from the point of safety due to its weight. In general, air brake system generates relatively long response time and large loss of pressure. It is known that the response time can be decreased by optimal design of brake system, i.e., by increasing the system pressure, minimizing the air line, and material of components. In this study, We developed experimental rigs for the measurement of braking response of heavy duty trucks and compared with the simulated results obtained from the net work fluid flow system analysis code (FLOWMASTER). The effect of several parameters such as, system pressure, diameter of pipe, chamber temperature on the brake response performance have been examined.

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions (유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구)

  • Kim, Seung Mo;Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.470-476
    • /
    • 2019
  • The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.