소비자의 식품소비행동은 소비자 패널 데이터와 같은 정형 데이터 뿐 아니라 매스미디어와 소셜미디어(SNS) 등 비정형 데이터로부터 영향을 받을 가능성이 높아지고 있다. 본 연구에서는 식품소비 관련된 정형 데이터와 비정형 데이터를 연계한 융합데이터 셋에 대하여 딥러닝 기반의 소비예측 모델을 생성하고 이를 검증한다. 연구의 결과는 정형 데이터와 비정형 데이터를 결합할 때 모델 정확도가 향상되었음을 보여주었다. 또한 비정형 데이터가 모델 예측 가능성을 향상시키는 것으로 나타났다. 변수들의 중요도를 식별하기 위해 SHAP 기법을 사용한 결과 블로그 및 비디오 데이터 관련 변수가 상위 목록에 있었고, 파프리카 구매 금액과 양의 상관관계가 있음을 알 수 있었다. 또한 실험 결과에 따르면 머신러닝 모델이 딥러닝 모델보다 높은 정확도를 보였고, 기존의 시계열 분석 모델링에 대한 효율적인 대안이 될 수 있음을 확인하였다.
비정형 초고층 구조시스템 통합설계 플랫폼은 비정형 초고층건물의 구조시스템 설계를 지원하는 여러프로그램들을 통합적으로 활용하여 구조설계자들이 협업을 수행하는 체계이다. 이 체계의 핵심적인 사항은 각 프로그램들이 필요한 자료들을 신속하고 정확하게 교환하는 것이다. 표준자료모델은 여러 프로그램들의 자료교환을 목적으로 적절한 범위 내에서 필요한 자료들을 취합하여 체계화한 것이다. 하지만 표준자료모델은 각 프로그램에서 요구되는 모든 자료들을 취합하고 그 목적에 부합되도록 체계화시킬 수 없어 문제가 발생한다. 이에 본 연구에서는 비정형 초고층건물 구조시스템 통합설계 플랫폼의 각 프로그램들이 표준 자료모델을 이용하여 자료를 교환하는 방법을 검토하고 비교하고자 한다.
보안 시스템에 대해서 고등급 평가를 받기 위해서는 정형적 방법론을 사용하여, 보안 모델을 설계하고, 보안 속성을 정확히 기술해야만 한다. 본 논문에서는 정형적 설계 방법을 통해 보안모델을 설계하고 검증하기 위한, SPR(Safety Problem Resolver) 정형검증도구의 검증방법 및 기능에 대해 소개하고자 한다.
국내 AEC 산업 분야에 2000 년대 중반부터 그 적극적인 도입이 시작된 BIM 기술은 최첨단 건축, 초대형 건축, 비정형 건축 등을 중심으로 그 도입이 가속화 되어 왔다. 건물 구축 기술의 부족으로 의해 완공률이 낮았던 비정형 건축물들이 BIM 기술의 도입으로 많은 구축 성공 사례가 생기면서 건축가들이 비정형 건축 설계에 활발히 도전하고 있다. 그러나 비정형 설계가 가능한 모델러들은 설계, 시공, 유지관리 등에서의 데이터 관리가 효율적인 BIM 데이터의 구축이 어렵다. 그러므로 본 연구에서는 비정형 모델러에서 생성된 건축 부재 데이터의 BIM 데이터로의 변환 프로세스를 제안하였다. 제안된 프로세스 모델은 비정형 건축 부재를 형성하기 위한 형성 조건 수신부, 건축부재 생성부, 그리고 BIM 데이터 생성부 세가지 부분으로 구성된다. 구체적으로는 NURBS 기반 모델러에서 비정형 슬라브, 기둥, 보 파라메트릭 건축 부재 형성과 BIM 도구로의 데이터 전이 및 BIM 건축 부재 데이터 형성을 위한 프로세스 모델을 제안하며, 이를 실현하기 위한 프로토타입 시스템이 구현되었다.
시각적이고 비정형적인 구조로 표현된 휘처 모델(Feature model)은 구문적 명확성을 보장할 수 없고, 자동화 툴(tool)에 의한 구문(syntax)의 검증이 어렵다. 따라서, 휘처 모델이 가진 구조물의 구문적 명확성을 입증하기 위한 정형적 명세와 모델 검사(model checking)가 필요하다. 본 논문은 Z 언어를 이용한 휘처 모델의 정형적 명세와 모델 검사를 통해서, 휘처 모델의 정확성을 검사하는 기법을 제시한다. 이를 위해, 휘처 모델과 Z간 변환 규칙을 정의하고, 이 규칙에 의거하여 휘처 모델의 구문에 대해 Z 스키마(schema)로 명세한다. 모델 검사는 Z 스키마 명세에 대해 Z/Eves 툴을 사용하여 구문, 타입 검사(type checking), 그리고 도메인 검사(domain checking)를 수행하여 모델의 모호성을 검사한다. 이로서, 휘처 모델의 구조물을 좀더 명확하게 표현할 수 있으며, 설계된 모델의 오류를 검사할 수 있다.
현재 국내 건설업에서는 꾸준히 증가하는 건설재해를 예방하기 위해 다양한 정책적 노력과 연구가 활발하게 진행되고 있다. 기존 연구에서 건설재해 예방을 위해 개발한 예측 모델의 경우, 주로 정형데이터만을 활용하였기에 건설현장의 다양한 특성을 충분히 고려하지 못한 예측 결과가 도출되었다. 따라서, 본 연구에서는 정형데이터와 텍스트 형식의 비정형데이터를 동시에 활용하여 건설현장의 특성을 충분히 고려할 수 있는 기계학습 기반 건설재해 사전 예측 모델을 개발하였다. 본 연구는 기계학습을 위해 건설공사 안전관리 종합정보망(CSI)의 최근 3년간 건설재해 데이터 6,826건을 수집하였다. 수집된 데이터 중 정형데이터의 학습은 5가지 알고리즘의 성능 분석을 통해 Decision forest 알고리즘을 사용하였고 비정형데이터의 학습은 BERT 언어모델을 사용하였다. 정형 및 비정형데이터를 동시에 활용한 건설재해 예측 모델의 성능 비교 결과, 정형데이터만을 활용한 경우보다 약 20 % 향상된 95.41 %의 예측정확도가 도출되었다. 본 연구 결과, 비정형데이터를 동시에 활용함으로써 예측 모델의 효과적인 성능 향상을 확인하였으며, 보다 정확한 예측을 통한 건설재해 저감을 기대할 수 있다.
본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.
유한상태 기계는 신뢰성이 요구되는 내장형 시스템의 제어흐름을 표현하고 검증하는데 많이 사용되는 모델이다. 하지만 자체가 가지고 있는 단순함으로 인해 복잡한 시스템을 명세하기에는 부족하다. 이러한 유한상태 기계의 단점을 극복하기 위해 다양하게 확장시킨 유한상태 기계들이 나왔지만 이렇게 확장된 유한상태 기계들에 대한 정형 의미의 부재로 인해서 요구사항중 하나인 명세를 검증하는데 어려움이 따른다. 이에 우리는 확장된 유한상태 기계의 정형 단계 의미를 정의하고, 이를 사용하여 모델에 대한 정형검증을 수행하였다. 그 결과 레이스 조건(race condition)과 애매한 전이, 순환하는 전이 등의 버그들을 모델에서 정형적으로 검출 할 수 있었다.
실시간 시스템은 응용분야의 특성상 높은 신뢰성을 요구하므로 설계시 시스템의 정확성과 안전성을 보장하는 것은 매우 중요하다. 신뢰성 보장을 위한 방법으로 정형기법(formal method)을 이용한 명세 방법이 연구되어 왔다. 정형적인 명세를 사용하는 경우 원하는 시스템의 특성에 대한 검증이 가능하며 자연어로 명세한 경우보다 모호함이 줄어들어 의사소통을 하는데 있어서 명확성을 제공한다. 그러나 이런 장점에도 불구하고 객체 지향 개발 방법론에서의 정형적인 명세에 관한 연구가 미흡하다. 본 논문에서는 객체 지향적 모델을 기반으로 하는 실시간 시스템을 위한 정형명세 언어인 Timed State Chart(TSC)를 제안한다. TSC는 Statecharts와 같은 계층적 상태 기계 모델(state machine model)로서 다양한 시간 제약사항의 명세를 위해 클릭 변수(clock variable)를 도입하여 실시간 객체(Real-Time Object 또는 RTO)를 명세한다. TSC를 이용하여 기존의 연구에서 표현할 수 없었던 주가와 마감시간과 같은 실시간 시스템의 다양한 요구사항을 효과적으로 표현할 수 있다.
컴퓨터 시스템에 대한 보안의 필요성이 계속적으로 증대되고 있으며 이에 다양한 보안시스템들이 개발되고 있다. 이러한 보안 시스템들이 높은 등급의 평가를 받기 위해서는 정형적 방법론을 사용하여 명세 및 검증을 해야 한다. 본 논문에서는 정형 검증의 한 방법론인 모델 체킹을 이용하여 접근통제모델을 설계하고 검증하는 방법을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.