• Title/Summary/Keyword: 정적 대변형

Search Result 18, Processing Time 0.017 seconds

Nonlinear Static Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects (큰 가로세로비를 가지는 날개의 대변형 효과를 고려한 비선형 정적 공탄성 해석)

  • Yu, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • In this study, nonlinear static aeroelastic analysis system for a high-aspect-ratio wing are developed using the transonic small disturbance (TSD) and large deflection beam theory and validated. For the coupling between fluid and structure, the transformation of displacement from the structural mesh to aerodynamic one is performed by the shape function of the beam finite element and the inverse transformation of force by work equivalent load concept. Also, for the static aeroelastic analysis of the wing the use of TSD aerodynamics are justified. The validation of the system includes one of the efficient transformation methods of force and displacement.

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

A Viscoelastic Constitutive Model of Rubber Under Small Oscillatory Loads Superimposed on Large static Deformation (정적 대변형에 중첩된 미소 동적 하중을 받는 고무재료의 점탄성 구성방식에 관한 연구)

  • Kim, Bong-Gyu;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.619-628
    • /
    • 2001
  • A viscoelastic constitutive equation of rubber is proposed under small oscillatory load superimposed on large static deformation. The proposed model is derived through linearization of Simos nonlinear viscoelastic constitutive model and reference configuration transformation. Statically pre-deformed state is used as reference configuration. The model is extended to a generalized viscoelastic constitutive equation including widely-used Mormans model. Static deformation correction factor is introduced to consider the influence of pre-strain on the relaxation function. The model is tested for dynamic behavior of rubbers with different carbon black fractions. It is shown that the constitutive equation with static deformation correction factor agrees well with test results.

Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation (정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • Nam, Yong-Yun;Kim, Sa-Soo;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.77-86
    • /
    • 1997
  • The advanced development in many fields of engineering and science has caused much interests and demands for crashworthiness and non-linear dynamic transient analysis of structure response. Crash and impact problems have a dominant characteristic of large deformation with material plasticity for short time scales. The structural material shows strain rate-dependent behaviors in those cases. Conventional rate-independent constitutive equations used in the general purposed finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate-dependent constitutive equation for elastic-plastic material is developed. The plastic stretch rate is modeled based on slip model with dislocation velocity and its density so that there is neither yielding condition, nor loading conditions. Non-linear hardening rule is also introduced for finite strain. Material constants of present constitutive equation are determined by experimental data of mild steel, and the constitutive equation is applied to uniaxile tension loading.

  • PDF

Postbuckling and Vibration Analysis of Cylindrical Composite Panel subject to Thermal Loads (열하중을 받는 복합적층 원통형 패널의 좌굴후 거동 및 진동해석)

  • Oh, Il-Kwon;Lee, In
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.148-156
    • /
    • 1999
  • The thermal postbuckling and vibration characteristics of cylindrical composite panel subject to thermal loads are analyzed using finite elements. The von-Karman nonlinear displacement-strain relation based on the layerwise theory is applied to consider large deflections due to thermal loads. Cylindrical arc-length method is used to take into account the snapping phenomena. Thermal snapping and vibration characteristics are investigated for various structural parameters such as thickness ratio, shallowness angle and boundary conditions. The present results show that thermal snapping changes the mode shapes as well as static deformations.

  • PDF

Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load (등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구)

  • Lee, Hyun-Ah;Zeshan, Ahmad;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1811-1820
    • /
    • 2010
  • Most components in the real world show nonlinear response. The nonlinearity may arise because of contact between the parts, nonlinear material, or large deformation of the components. Structural optimization considering nonlinearities is fairly expensive because sensitivity information is difficult to calculate. To overcome this difficulty, the equivalent load method was proposed for nonlinear response optimization. This method was originally developed for size and shape optimization. In this study, the equivalent load method is modified to perform topology optimization considering all kinds of nonlinearities. Equivalent load is defined as the load for linear analysis that generates the same response field as that for nonlinear analysis. A simple example demonstrates that results of the topology optimization using equivalent load are very similar to the numerical results. Nonlinear response topology optimization is performed with a practical example and the results are compared with those of conventional linear response topology optimization.

Simplified Collapse Analysis of Ship Transverse Structures (선체 횡구조물의 단순화된 최종 강도 해석)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 1989
  • In this paper, a theory for the static analysis of large plastic deformations of 3-dimensional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam end, and post. failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Analusis of Strain Rate Distribution using Fourier Transform Grid Method (퓨리에 변환 격자법을 이용한 스트레인 속도분포의 해석)

  • 양인홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.135-141
    • /
    • 1993
  • 고속으로 변형을 받는 재료의 변형 강도는 정적인 부하를 받는 경우와는 다르며 이 고속 현상을 해석하기 위해서는 시간적, 공간적 변화를 조사할 필요가 있다. 일반적으로 스트레인 속도를 구하는 데는 스트레인 게이지를 이용하고 있지만, 고무와 같은 대변형을 하는 물체에서는 정확한 데이터를 얻기가 곤란 하므로 스플라인 함수를 이용해서 보간 작업을 해야 한다. 그래서, 최근에는 스트레인 속도를 구하는 방법 으로 격자법, 모아레법, 광탄성법 등이 이용되고 있다. 재료의 변위 분포를 구하는 데는 격자법이 잘 이용 되어지고 있지만 스트레인 속도 분포의 해석의 정도에 문제가 되고 있다. 이러한 문제를 해결하기 위하여 본 논문에서는, 고속으로 변형하는 물체의 형상을 역학적으로 해석하기 위해 고속도 카메라로 촬영을 하고 그 때 얻어진 격자 화상을 퓨리에 변환 격자법을 이용해서 위상을 구하고 스트레인 속도 분포를 해석했다.

  • PDF