• Title/Summary/Keyword: 정적변형계수

Search Result 62, Processing Time 0.024 seconds

The method using dynamic load and static load figures out gust factor of the membrane structure (동적하중과 정적하중을 이용한 막구조의 거스트 계수 산출 방법)

  • Wang, Ben-Gang;Jeong, Jae-Yong;You, Ki-Pyo;Kim, Young-Moon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.19-24
    • /
    • 2008
  • The thesis is for gust factor needing when calculate the wind resistance design. For the gust factor, to the membrane structural model, carry through the wind tunnel test and the static load test. Therefore, at first through the tensile test of the fabric material, designate the material of the membrane structural model. Then, to saddle, wave, arch and point four kinds of basic shape membrane structural models, carry on the wind tunnel test, determine their dynamic load and distortion on lateral direction. Finally, according to distort situation of the membrane structure in the wind tunnel test, carry on the static load experiment outside of the wind tunnel, calculate static load which corresponding with distort. According to dynamic load and the static load, figure out gust factor of these kinds of basic membrane structure.

  • PDF

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.

A Study on the Estimation of Relative Compaction on the Subgrade using a Portable FWD (소형 FWD를 이용한 노상토의 다짐도 추정에 관한 연구)

  • Kang, Hee-Bog;Kim, Kyo-Jun;Kang, Jin-Tae;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.213-219
    • /
    • 2007
  • This study was intended to estimate of relative compaction on the ground under the load using of portable FWD. The outcome in the wake of the study is highlighted as below. Viewing the variation of dynamic deflection modulus depending on a number of compaction, when a number of compaction increased to 8 (18.3MPa) from 4 (15Mpa), a dynamic deflection modulus increased 27%, and when a number reached to 12 (27.9MPa), it doubled the value indicated in 4. Viewing the relationship between dry density and dynamic deflection modulus in line with the increase in a number of compaction, a number of compaction by the roller reaching to the degree of compaction equivalent to 95% of max dry density was 13, with a dynamic deflection modulus indicating 27MPa ~ 29MPa.

Measurements o Elastic Moduli of Rock Cores Using Free-Free Resonacne Tests (자유단 공진시험을 이용한 암석의 탄성계수 측정)

  • 목영진
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.95-100
    • /
    • 1999
  • Dynamic measurements are used rather sparingly to determine the elastic modull of rock cores and modulus values are not much utilized in design practice. The reason seems to result from the general perception that values obtained by dynamic measurement are much higher (about 10 times) than those determined statically. This paper presents results from dynamic and static tests on rock cores. The findings are: 1) elastic modull can be consistently determined by laboratory seismic testing. 2) nonlinear deformation characteristics of rock cores was tentatively proposed with variation in elastic modulus with strain.

  • PDF

Design Wind Loads for Catwalk Structures (캣워크 구조물 설계 공기력 산정)

  • Lee, Han Kyu;Kim, Jong Hwa;Lee, Seung-Ho;Kwon, Soon-Duck
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.71-71
    • /
    • 2011
  • 캣워크는 현수교의 주케이블을 가설을 위해 일시적으로 설치하는 공중작업발판으로 주케이블 가설장비와 작업원 등의 하중을 지지한다. 캣워크는 유연한 구조물로서 풍하중에 상당한 변형이 발생한다. 하지만, 국내외를 막론하고 캣워크의 내풍안정성에 대한 연구는 별로 이루어지지 않았다. 거기에 더하여 캣워크에 작용하는 정적 공기력에 대한 정보도 부족하며, 현재 캣워크 단면에 대한 적절한 풍하중을 산정하지 못하고 경험적인 설계가 이루어지고 있다. 따라서 캣워크의 효율적인 내풍설계를 위하여 풍동실험을 통한 충실률과 공기력계수와의 관계를 알아보는 것이 필요하다. 이를 위하여 축척 1/4인 모형을 사용한 풍동실험을 통하여 메쉬망의 크기를 변화시키면서 충실률에 따른 공기력계수를 측정하고 설계식을 제안하고자 한다. 캣워크는 로프와 아울러 가는 철망으로 아래와 양 옆이 막혀 있다. 즉 바람을 직접 받는 부분인 철망은 가는 원형단면으로 구성되어 있다. 원형 단면의 경우에 레이놀즈 수에 따라 항력계수가 크게 변하는 것으로 알려져 있다. 그러나 가는 원형 단면으로 둘러싸인 캣워크의 항력계수에 레이놀즈 수가 미치는 영향에 대해서는 연구된 바가 없다. 본 연구에서는 캣워크의 공기력계수에 미치는 레이놀즈 수에 대한 영향을 파악하고자 1/4모형과 1/14모형을 제작하여 최대풍속 30m/s까지 변화시켜가면서 공기력계수를 측정하였다. 이때 레이놀즈 수는 최대 20배까지 차이가 나므로 만약 공기력계수가 레이놀즈 수의 영향을 받는다면 확실히 그 영향을 파악할 수 있다. 본 연구에서는 풍동실험을 통해 충실률과 공기력계수와의 관계과 레이놀즈 수의 영향을 살펴보았으며, 정적공기력 계수의 설계식을 제안하였다. 본 연구를 통하여 얻은 결과를 정리하면 다음과 같다. 1. 축척 1/14 및 1/4 모형을 사용하여 다양한 풍속에서 공기력계수를 측정한 결과, 캣워크에 작용하는 정적 공기력계수는 레이놀즈 수의 영향을 받지 않는 것으로 나타났다. 따라서 향후 새로운 형식의 캣워크에 대한 풍동실험을 수행할 경우에 축척에 상관없이 풍동실험 결과를 사용할 수 있을 것으로 판단된다. 2. 풍동실험 결과, 캣워크에 작용하는 정적 공기력계수 중 항력계수와 피칭모멘트계수는 측면 충실률에 따라 달라지고, 영각에 대한 양력계수의 기울기는 하부 충실률의 영향을 받는 것으로 나타났다. 그리고 주케이블이 캣워크 내부에 위치하고 있어도 캣워크의 정적 공기력계수에는 큰 영향을 미치지 않은 것으로 측정되었다. 이를 정리하여 캣워크 충실률에 따른 정적 공기력계수의 추정식을 제안하였다.

  • PDF

A Comparison of Static and Dynamic Deformation Modulus by Dynamic Plate Test (동평판 재하시험을 이용한 정적 및 동적 변형계수 비교)

  • 박용부;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.335-342
    • /
    • 2003
  • The method of measuring ground deformation modulus, in situ-testing has the disadvantage where the exam number is limited because it needs counter weight and a lot of measurement times. Recently, it has supplemented this problem and the equipments by which measurement can be made quickly are developed and applied in field., That is Falling Weight Deflectometer(FWD), Light Drop Weight Tester(LDWT), Geogauge. Light Drop Weight Teste.(LDWT) is introduced firstly in the name of ‘a lightweight fall circuit tester for a railroad public corporation’ by KTX. Since KTX introduced LDWT, a number of research organizations have used LDWT to find out domestic standard for quality management of base ground. In this study we used ZFG 02 which was manufactured by Stendal in Germany and measured the dynamic deformation modulus in soil box and in-situ. And we analyzed the correlation of the dynamic deformation modulus with static deformation modulus based on plate test in the same ground.

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Evaluation of the Resilient and Permanent Behaviors of Cohesive Soils (점성토의 회복 및 영구변형 특성 평가)

  • SaGong, Myung;Kim, Dae-Hyeon;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • Resilient modulus has been used for characterizing the stress-strain behavior of subgrade soils subjected to traffic loadings. With the recent release of the M-E Design Guide, highway agencies are further encouraged to implement the resilient modulus test to improve subgrade design. The subgrade design for the trackbed, however, is primarily relying on the static test results such as $K_{30}$ and deformation modulus, Ev. Therefore applicability of the resilient modulus for the design of trackbed needs to be evaluated. In this study, physical property tests, unconfined compressive tests and resilient modulus tests were conducted to assess the resilient and permanent strain behavior of 14 cohesive subgrade soils. A predictive model for estimating the resilient modulus is proposed based on the results of unconfined compressive tests and tangent elastic modulus, unconfined compressive strength, failure strain, secant modulus at peak, and yield strain. The predicted resilient moduli using the predictive models compared satisfactorily with measured ones. Although the permanent strain occurs during the resilient modulus test, the permanent behavior of subgrade soils is currently not taken into consideration.

Analysis of Static Crack Growth in Asphalt Concrete using the Extended Finite Element Method (확장유한요소법을 이용한 아스팔트의 정적균열 성장 분석)

  • Zi, Goangseup;Yu, Sungmun;Thanh, Chau-Dinh;Mun, Sungho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.387-393
    • /
    • 2010
  • This paper studies static crack growth of asphalt pavement using the extended finite element method (XFEM). To consider nonlinear characteristics of asphalt concrete, a viscoelastic constitutive equation using the Maxwell chain is used. And a linear cohesive crack model is used to regularize the crack. Instead of constructing the viscoelastic constitutive law from the Prony approximation of compliance and retardation time measured experimentally, we use a smooth log-power function which optimally fits experimental data and is infinitely differentiable. The partial moduli of the Maxwell chain from the log-power function make analysis easy because they change more smoothly in a more stable way than the ordinary method such as the least square method. Using the developed method, we can simulates the static crack growth test results satisfactorily.

Static Behavior of Concrete-Filled and Tied Steel Tubular Arch(CFTA) Girder (CFTA거더의 정적 거동연구)

  • Kim, Jong-In;Kim, Doo-kie;Lee, Jang-hyeong;Kim, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.225-231
    • /
    • 2009
  • This study introduces the CFTA girder(Concrete-Filled and Tied Steel Tubular Arch Girder) which is a combined structural system of traditional CFT, arch, and prestress structures. Static load tests and structural behavior analyses were carried out for a 25m long CFTA girder. In the analysis, each load of 58kN, 88kN, 148kN, 207kN,and 298kN was applied incrementally at the positions of 1.0 m distances in both directions from the center of the girder. On each test, strain and displacement were measured. Linear static FEM analyses using Strand7 code were also performed to check the structural stability and to investigate the effects of prestressing(${\pm}$20%) and material property(Young's modulus) on the displacement and strain. The results of this study are summarized as follows: the initial strain & displacement under selfweight and prestressing were influenced with the variation of prestressing, but they were mainly effected only by Young's modulus when additional loads were applied.