• Title/Summary/Keyword: 정수처리공정

Search Result 294, Processing Time 0.025 seconds

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Water Back-flushing Period (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물역세척 주기의 영향)

  • Park, Jin Yong;Park, Sung Woo
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.243-250
    • /
    • 2012
  • The effect of water back-flushing period (filtration time, FT) was investigated in hybrid process of alumina microfiltration and photocatalyst for advanced drinking water treatment in this study, and compared with the previous studies with carbon microfiltration or alumina ultrafiltration membranes. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased as decreasing FT, which was same with the previous results with carbon microfiltration or alumina ultrafiltration membranes. The treatment efficiency of turbidity was high beyond 98.1%, and the effect of FT was not shown on treatment efficiency of turbidity, which was same with the previous result of carbon microfiltration. The treatment efficiency of organic matters was the highest value of 89.6 % at FT 8 min, which was a little higher than those of the previous results, and the effect of FT was not shown on treatment efficiency of organic matters.

A Case Study on Chlorine Dioxide Usage at a Conventional Water Treatment Plant (기존 정수장 이산화염소 시범도입 사례연구)

  • Lee, Song-Hee;Lee, Byung-Doo;Kim, Jin-Keun;Seog, Kwon-Soo;Lee, Joung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • As the regulations on DBPs are tightened, many water treatment plants (WTPs) in Korea have already introduced or will introduce enhanced coagulation, alternative disinfectants and advanced treatments such as ozonization and granular activated carbon to improve drinking water qualify. After a phenol leakage accident at the Nakdong-River in 1991, 26 WIPs in Korea introduced carbon dioxide generators, but there has been no accumulation of significant operating data. This research summarizes things that should be considered for the introduction of carbon dioxide disinfection process to WTPs based on one year operation data from A WTP that has had high concentration of DBP during a specific period in the summer. The removal efficiency of DBP was $30{\sim}40%$, but those of 2-MIB, Geosmin were less than 10%. The generation rate of $ClO_2$ by-products such as chlorite and chlorate were $70{\sim}100%$ of input dosage, but the ratios increased over time. At the same time, strong chlorine odors may be produced in the distribution system when $ClO_2$ was used with $Cl_2$ as a result of reaction between the chlorite and residual chlorine.

Evaluation of System operated by Feed-and-discontinuous Bleed Mode using Tubular Type Ultrafiltration Membrane for Water Treatment (Feed-and-discontinuous Bleed 방식으로 운전되는 정수처리용 관상형 한외여과막 시스템의 평가)

  • Choi, Hyeok;Seo, Young-Woo;Kim, Hyung-Soo;Im, Jong-Seong;Hwang, Sun-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2187-2195
    • /
    • 2000
  • A water treatment system using membrane separation technology can provide stable effluent quality and its maintenance is relatively easy comparing to the conventional water treatment system. In addition, the membrane filtration system is very compact such that it can replace existing water treatment processes of coagulation/sedimentation/filtration by only one process. However, a major problem associated with membrane filtration is flux decline with operating time due to concentration polarization and fouling, so a systematic study on evaluation of long-term filtration performance is necessary. A membrane filtration system using tubular type ultrafiltration membranes with MWCO of 30.000 Da was constructed for this study and it had been operated in a feed-and-discontinuous bleed mode. Flux was stabilized after operation of 1.500 hours and maintaining above 25 LMH until 4.000 hours. Contaminants causing SS and turbidity were almost completely removed while the $UV_{260}$ and DOC removals were 55% and 49%, respectively. A simple mass balance equation was developed to predict maximum concentrations of SS, turbidity, $UV_{260}$ and DOC in a operation cycle. For SS and turbidity the measured max, concentrations in each cycle agree well with the predicted values while the measured max, concentrations of $UV_{260}$ and DOC were 59% and 37% of the predicted values, respectively.

  • PDF

Sludge Minimization by Using Dewater and Thermal Treatment in the Water Treatment Plant (탈수(脫水) 및 건조기법(乾燥技法)을 이용한 정수장(淨水場) 슬러지 감량화(減量化))

  • Jun, Hang-Bae;Kim, Yong-Han;Kim, Ryang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.87-98
    • /
    • 1994
  • Sludge minimization in an water treatment plant can be achieved by optimizing a main water treatment process as well as by enhancing a thickening and a dewatering facilities. In this study, dewatering and drying techniques for reducing the quantity of the water sludge generated from the conventional water treatment plant in the local states were investigated by reducing its water content. Not only the types and dosages of polymers but also the mixing intensity of the mixtures of a concentrated sludge and polymers on the different pH were evaluated for the optimum dewatering conditions of the water sludge. Weight reduction of the water sludge was also tested at a given temperature range. The dewatering efficiency of the water sludge was not affected by the types of polymer but by mixing intensity(GT value) in this study. pH effect on dewaterbility of the water sludge took a major role at the neutral pH range. The optimal polymer dose was 1.5 mg-polymer/g-TSS(about 40mg/L as polymer). Dewaterability was enhanced at a lower mixing intensity(GTbelow 10,000 sec-1). Free water in the void of sludge cake was dried around $100^{\circ}C$, chemical bound water was evaporated around $320^{\circ}C$, and organic material was burned out at the range of 300 to $600^{\circ}C$. Ignition losses of the water sludge were varied 15 to 40 % as the raw water quality. The ignition loss due to the chemical bound water was 10-20% and the loss due to the organic material was 4-20% of the total ignition loss.

  • PDF

Effect of pH Control, Ozonation and Coagulation on THMs Formation in Dringking Water Treatment Process of the Downstream of Nakdong River (낙동강 하류의 정수처리 공정에서 pH, 오존 및 응집이 트리할로메탄 생성에 미치는 영향)

  • Lee, Jeong-Kyu;Son, Hee-Jong;Kim, Sang-Goo;Hwang, Young-Do;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.105-111
    • /
    • 2017
  • This study was conducted to evaluate the effects of pH control and ozonation, coagulation on trihalomethanes (THMs) formation during prechlorination of the Nakdong river water. The results showed that lower pH was reduced THMs formation during prechlorination. THMs formation of water lowered pH 9.5 to 9.0, was reduced 18.3% and lowered pH 9.0 to 8.0 was reduced 14%, lowered pH 8.0 to 7.0 was reduced 7%, lowered pH 9.5 to 8.0 was reduced 29%. A low ozone dose ($0.11{\sim}0.48mg{\cdot}O_3/DOC$) before chlorination reduced the yields of THMs (reduced 6~24% in chlorination) compared with no preozonation. Thus the low ozone dose pretreatment is relatively effective plan to reduce THMs formation during chlorination. When ozone 1.0 mg/L, Alum 40 mg/L and sulfuric acid 6 mg/L dosed, The yields of THMs formation was reduced 42% compared with only chlorination. Input of chlorine after preozonation (followed coagulation, pH control) is more effective than only decline pH at a intake station to control THMs formation in a water treatment process. When chlorine 2.5 mg/L was added before coagulation (alum 40 mg/L), THMs formation was reduced 19% by lower pH and decreased 18% by a natural organic matter (NOM) removal compared with only chlorine 2.5 mg/L addition. Because coagulation could induce simultaneously lower pH and NOM removal, THM formation concentration is more effectively lowed than decreasing pH in the Nakdong river water.

Speciation of THMs, HAAs (THMs, HAAs의 종분포)

  • Kim, Jin-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1135-1140
    • /
    • 2006
  • Concentration and speciation of trihalomethanes(THMs) and haloacetic acids(HAAs) that can be created during chlorine disinfection as disinfection by-products(DBPs) in Korean water treatment plants(WTPs) were investigated. 4 WTPs that adopted conventional water treatment processes were chosen for investigation and each represented a typical WTP on the Han, Keum, Sumjin and Nakdong Rivers. The average concentration of THMs was 26.9 ppb, and the maximum and minimum concentrations were 47.6 ppb and 11.0 ppb respectively, while the average concentration of HAAs was 25.4 ppb, and the maximum and minimum concentrations were 57.1 ppb and 9.7 ppb respectively. DBPs concentration was lower in the winter than the summer. The major species of THMs was chloroform and its average percentage was 77%, and the second highest was bromodichloromethane(20%), while the concentration of bromoform was below detection limits. The sum of dichloroacetic acid(DCAA) and trichloroacetic acid(TCAA) was 97% of $HAA_5 $ on average base. But its percentage was 90% in the Han River WTP, especially it was the lowest during the winter. On the other hand, the concentration of DCAA was higher than TCAA except during the summer.

A Framework on secure remote control in plant system (안전한 공장 원격제어 시스템 프레임 워크)

  • Lee, Jaemin;Mun, Jiman;Jung, Souhwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.989-992
    • /
    • 2012
  • 본 논문에서는 안전한 공장 원격제어를 위한 시스템 프레임 워크를 제안한다. 공장기계와 IT의 융합으로 기술 발전함에 따라 공장 제어 시스템을 공장내부에서는 무선 제어시스템, 공장 외부에서는 원격 시스템의 필요성이 대두되어 많은 연구들이 진행되고 있다. 기존의 공장 자동화 시스템 SCADA(Supervisory Control And Data Acquisition)는 생산 공정 및 플랜트의 상태를 감시하고 제어하기 위한 목적으로 개발되었지만 원격제어 관련 내용이 부족하다. 공장 내부 보안을 위한 표준으로 ISA99 Security Standards에서도 통합 공정 제어 Zone & Conduits 방식 제시 공장의 각 영역을 Zone으로 나누고 허가된 사용자만 Conduit를 통해 다른 Zone의 노드와 통신을 하는 방식을 제안하였다. 하지만, 전체적인 프레임워크는 정의를 하고 있으나 외부 원격 제어 내용 부족하다. 따라서 본 논문에서는 스마트폰을 활용한 공장 외부에서의 안전한 원격 제어를 제공하는 통합관제시스템 프레임워크 구조를 제시하여 향후 관련 기술에 대한 기준점을 제시한다.

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.

The Study for reducing accidents using the Data Base of Water Treatment Plant (수도 정보를 활용한 사고저감 방안 연구)

  • Seo, Gangdo;Yun, Youngmin;Kim, Haksung;Hwang, Jaemoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.138-141
    • /
    • 2015
  • K-water operates many Water Treatment Plants(WTP) to supply clean water to people. There are automation process control equipments collecting data at each step in WTP. The data collected is big enough to 370,000Tag/min from the K-water Water Treatment Plants. In the past, this big data was not important, we focused on the operating water purification process using the data. Currently, we increased the importance of attention to take advantage of Big Data. The research about the accident reduction and efficiency improvement in WTP are ongoing by data collection and analysis. In this paper, we analyzed the flow rate, power and pressure obtained in the accident case in WTP. We researched the methods for accident prediction and reduction.

  • PDF