• Title/Summary/Keyword: 정성적 데이터

Search Result 677, Processing Time 0.03 seconds

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Choo, Yeongyu;Park, Jae-hyeon;Kim, Young-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.171-174
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

  • PDF

Prediction of Housing Price Index using Data Mining and Learning Techniques (데이터마이닝과 학습기법을 이용한 부동산가격지수 예측)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.47-53
    • /
    • 2021
  • With increasing interest in the 4th industrial revolution, data-driven scientific methodologies have developed. However, there are limitations of data collection in the real estate field of research. In addition, as the public becomes more knowledgeable about the real estate market, the qualitative sentiment comes to play a bigger role in the real estate market. Therefore, we propose a method to collect quantitative data that reflects sentiment using text mining and k-means algorithms, rather than the existing source data, and to predict the direction of housing index through artificial neural network learning based on the collected data. Data from 2012 to 2019 is set as the training period and 2020 as the prediction period. It is expected that this study will contribute to the utilization of scientific methods such as artificial neural networks rather than the use of the classical methodology for real estate market participants in their decision making process.

A Case Study on Improvement of Data Management Process for Enhancing Data Quality: Focus on Data Standards and Requirement Management (데이터 품질 향상을 위한 데이터 관리 프로세스 개선 사례 연구: 데이터 표준과 요구사항 관리 중심으로)

  • Heh, Hee-Joung;Kim, Jong-Woo
    • Information Systems Review
    • /
    • v.10 no.1
    • /
    • pp.91-113
    • /
    • 2008
  • Recently, as most functional business activities in an enterprise are supported by computerized information systems, data duplication and inconsistency among functional information systems become serious problems. It brings people to have many interests on data quality management. This paper presents a case study in which a company had improved their data quality by enhancing their data quality management processes. Though the case study, we describe main issues and risk factors in the process of data quality improvement projects as well as solutions to resolve the issues, which can be referred by other companies who pursue data quality improvement. Also, the improvement effects are evaluated by multidimensional perspectives which include quantitative and qualitative measures on data quality, productivity, customer satisfaction, organization, and culture.

Analysis of Economic Indicators and Depression using Panel Data: based on data from 2018 to 2022 (패널 데이터를 활용한 경제적 지표와 우울증 분석: 2018년부터 2022년 데이터를 기반으로)

  • Sung-Min Woo;Bong-Hyun Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.29-35
    • /
    • 2024
  • This study aims to analyze the impact of economic indicators (economic growth rate, employment rate, inflation) on individuals' mental health, particularly the occurrence of depression, and to clarify the correlation between economic stability and mental health. Data on economic indicators and depression were collected from public data portals and national statistics, and then refined and analyzed using Python and Pandas. Data visualization was performed using Seaborn and Matplotlib. The results showed a strong correlation between economic instability and increased depression rates, with a tendency for the number of depression cases to rise during periods of inflation and declines in economic growth. Additionally, certain age groups and genders exhibited higher depression rates, with social isolation and economic difficulties identified as major contributing factors. This study contributes to mental health policy development, and further research considering various social factors is needed.

방송, 통신 Internet 분야에서의 미디어 환경변화 비교분석

  • Nam, Pyo
    • Broadcasting and Media Magazine
    • /
    • v.4 no.3
    • /
    • pp.9-18
    • /
    • 1999
  • 최근 급격한 유무선 통신기술의 발달로 인한 미디어 산업의 환경변화에 따른 국내외 현상을 바탕으로, 가능한 객관성 있는 정성적, 정량적 데이터에 근거를 두고 미래의 변화를 예측하고자 함이 본문의 취지이다. 본문에서 기술한 내용에서는 국가, 사회의 다양한 문화 및 제도 변화에 따른 영향 변수는 고려하지 않았다. 순수하게 경제적, 기술적인 환경 변화에 의한 미래의 변화를 예측 해보는데 중점을 두었다. 미디어 산업의 미래는 방송, 통신, 인터넷 각 분야가 독립적으로 존재하면서 상호작용을 통해 각각의 형태를 변화시키게 된다는 것이다.

  • PDF

A Study on the Human Sensibility Ergonomic Design Supporting System (감성공학적 디자인 요소변환 지원 시스템의 설계에 관한 연구)

  • 한성배;양선모;정기원;김형범;박정호;이순요
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.129-135
    • /
    • 1996
  • 본 논문은 제품을 설계하는데 있어서 고객의 감성을 구체적인 디자인 요소로 변환하는 감성공학적 디자인 요소변환 지원 시스템을 설계하는데 목적이 있다. 감성공학적 디자인 요소변환 지원 시스템은 감성 데이터 처리 서브시스템, 디자인 요소변환 서브시스템, 형상 데이터 처리 서브시스템 등 크게 세 가지의 서브시스템으로구성된다. 감성 데이터 처리 서브시스템은 고객의 제품에 대한 정성적 감성을 분석하여 디지인 요소와 상관성을 나타내기 위한 시스템으로서, 제품을 표현하는 감성어휘를 추출하고 이를 분석하여 디자인 요소로 변환할 수 있게 해주는 데이터베이스를 구축하는 것이다. 디자인 요소변 환 서브시스템은 고객이 원하는 제품의 이미지를 구체적인 디자인 요소와 연결하는 추론 시스템으로서 감성 데이터베이스에 저장되어 있는 어휘 중에서 고객이 선택한 감성어휘에 대해 퍼지 추론을 이용하 여 디자인 요소와의 연결관계를 형성하게 된다. 형상 데이터 처리 서브시스템은 제품의 아이템/카테고 리에 대한 형상을 데이터베이스로 가지고 있으며, 디자인 요소변환 서브시스템에의해선정된 제품정보와 데이터베이스를 연결하여고객이 원하는 제품이 구체적으로 어떠한 형상을 가지게 되는가를 보여주게 된다.

  • PDF

Corpus Construction of National Assembly Minutes Summarization for Korean Abstractive Meeting Minutes Summarization (한국어 회의록 생성 요약을 위한 국회 회의록 요약 말뭉치 구축 연구)

  • Younggyun Hahm;Yejee Kang;Seoyoon Park;Yongbin Jeong;Hyunbin Seo;Yiseul Lee;Hyejin Seo;Saetbyol Seo;Hansam Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.192-197
    • /
    • 2022
  • 요약 연구의 주류는 아직 문서를 대상으로 하지만, 최근에는 회의 요약 연구에 대한 관심이 크게 높아지고 있다. 본 연구는 국립국어원 국어 빅데이터 구축 사업의 일환으로 국내에서 아직 연구되지 않은 국회 회의록 생성 요약에 대해 연구를 진행하였으며, 국회 회의록에 대한 생성 요약 데이터세트를 구축하였다. 또한 생성 요약 모델을 통해 구축된 데이터세트에 대한 정량 및 정성적 평가를 진행함으로써 국회 회의록 요약 데이터세트에 대한 평가 및 향후 생성 요약과 회의록 요약의 연구 방향을 모색하였다.

  • PDF

Boundary-enhanced SAR Water Segmentation using Adversarial Learning of Deep Neural Networks (적대적 학습 개념을 도입한 경계 강화 SAR 수체탐지 딥러닝 모델)

  • Hwisong Kim;Duk-jin Kim;Junwoo Kim;Seungwoo Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.2-2
    • /
    • 2023
  • 기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라 실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과 날씨에 무관하게 촬영이 가능하여 수재해 발생시에도 영상을 확보할 수 있다. 합성개구레이다를 활용한 수체 탐지 알고리즘 개발이 활발히 연구되어 왔고, 딥러닝의 발달로 CNN을 활용하여 높은 정확도로 수체 탐지가 기능해졌다. 하지만, CNN 기반 수체 탐지 모델은 훈련시 높은 정량적 정확성 지표를 달성하여도 추론 후 정성적 평가시 경계와 소하천에 대한 탐지 정확성이 떨어진다. 홍수 모니터링에서 특히 중요한 정보인 경계와 좁은 하천에 대해서 정확성이 떨어짐에 따라 실생활 적용이 어렵다. 이에 경계를 강화한 적대적 학습 기반의 수체 탐지 모델을 개발하여 더 세밀하고 정확하게 탐지하고자 한다. 적대적 학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로 관여하며 더 높은 정확도를 달성할 수 있도록 학습이다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여, 생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로 라벨데이터와 수체 탐지 결과를 구분한다. 경계가 강화될 수 있도록, 면적과 경계를 모두 고려할 수 있는 손실함수 조합을 구성하였다. 제안 모델이 경계와 소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score를 사용하였으며, 육안 판독을 통해 정성적 평가도 진행하였다. 기존 U-Net 모델이 탐지하지 못하던 영역에 대해 제안한 경계 강화 적대적 수체 탐지 모델이 수체의 세밀한 부분까지 탐지할 수 있음을 증명하였다.

  • PDF

Design of a Large-Scale Qualitative Spatial Reasoner Based on Hadoop Clusters (하둡 클러스터 기반의 대용량 정성 공간 추론기의 설계)

  • Kim, Jonghwan;Kim, Jonghoon;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.1316-1319
    • /
    • 2015
  • 본 논문에서는 대규모 분산 병렬 컴퓨팅 환경인 하둡 클러스터 시스템을 이용하여, 공간 객체들 간의 위상 관계를 효율적으로 추론하는 대용량 정성 공간 추론기를 제안한다. 본 논문에서 제안하는 공간 추론기는 추론 작업의 순차성과 반복성을 고려하여, 작업들 간의 디스크 입출력을 최소화할 수 있는 인-메모리 기반의 아파치 스파크 프레임워크를 이용하여 개발하였다. 따라서 본 추론기에서는 추론의 대상이 되는 대용량 공간 지식들을 아파치 스파크의 분산 데이터 집합 형태인 PairRDD와 RDD로 변환하고, 이들에 대한 데이터 오퍼레이션들로 추론 작업들을 구현하였다. 또한, 본 추론기에서는 추론 시간의 많은 부분을 차지하는 이행 관계 추론에 필요한 조합표를 효과적으로 축소함으로써, 공간 추론 작업의 성능을 크게 향상시켰다. 대용량의 공간 지식 베이스를 이용한 성능 분석 실험을 통해, 본 논문에서 제안한 정성 공간 추론기의 높은 성능을 확인할 수 있었다.