Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.664-666
/
2005
이 논문에서는 기존의 지식관리시스템과 P2P방식을 접목한 P2P 지식관리시스템을 제안하고 제안된 시스템의 구조와 효율적으로 지식을 검색하기 위한 지능형 에이전트 대하여 기술하였다. 에이전트의 종류는 지식추출과 추천 에이전트가 있으며, 지식추출 에이전트는 대량의 데이터에서 지식을 추출하고, 개인 맞춤형 지식 추천 에이전트는 추출된 지식에서 사용자가 관심 있는 분야의 지식을 추천해 주는 것이다. 제안된 시스템의 구조와 에이전트 기법은 회사나 단체에 속한 사용자들이 방대한 데이터, 정보 또는 사용자들의 전문성과 경험으로 축적된 지식을 빠르고 쉽게 검색하게 해주어 양질의 지식을 사용자들이 추천 받아 사용하도록 함으로써 전체 구성원의 지식도를 높이며, 이러한 지식들을 재활용하여 더욱 많은 지식과 부가 가치를 창출하도록 지원하여 준다.
In this thesis, we propose ontology based context-aware recommendation system using concept hierarchy(OCARCH), Context-aware recommendation services are useful to provide an user with relevant information and/or services bared on his current context, However several approaches to context-aware recommendation system have been already proposed, each of them provide information without considering level of information concept bared on his current context, For this reason, we propose OCARCH as system capable of helping people to find their way quickly and easily through large amounts of information by determining level of information concept based on his current context, We are also using prefetching algorithm to store recommendation information that the user is likely to need in the near future based on current predictions, Therefore the OCARCH enables users to obtain relevant information efficiently, Several experiments are performed and the experimental results show that the proposed system provides more effective than conventional context-aware recommendation system.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1275-1277
/
2013
최근 성별과 나이를 불문하고 화장품에 관한 관심이 증가하고 있다. 그러나 현재까지의 화장품 추천 시스템은 간단한 피부 자가 분석이 어렵기 때문에 자신의 피부를 잘 알 수 없는 상황에서, 사용자 개개인의 피부 정보를 전혀 고려하지 않은 정보를 제공하고 있다. 따라서, 본 논문에서는 사용자의 피부 정보를 분석하여 각각의 사용자에게 적합한 화장품을 추천하는 웹 시스템을 제안한다.
Collaborative filtering, one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information and supporting the decision making. However, despite of its success and popularity, one notable issue is incredibility of recommendations by unreliable users called shilling attacks. To deal with this problem, in this paper, we analyze the type of shilling attacks and propose a unique method of building a model for protecting the recommender system against manipulated ratings. In addition, we present a method of applying the model to collaborative filtering which is highly robust and stable to shilling attacks.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.427-430
/
2022
추천시스템에서 콜드스타트 문제를 해결하기 위해 다양한 연구들이 진행되고 있다. 하지만, 대부분의 연구는 아직도 사용자 기반의 히스토리 데이터셋을 반드시 필요로 하여, 콜드스타트 문제를 완벽히 해결하지 못하고 있다. 이에 본 논문은 콜드스타트 문제를 완화할 수 있는 기저속성 기반의 추천시스템을 제안한다. 제안하는 방법론을 검증하기 위해, 직접 수집한 한국어 영화 리뷰 데이터셋을 기반으로 성능을 검증하였으며, 평가 결과 제안한 방법론이 키워드와 사용자의 리뷰 점수를 효과적으로 반영한 추천시스템임을 확인할 수 있었고, 데이터 희소성 및 콜드스타트 문제를 완화하여 기존의 텍스트 기반 랭킹 시스템의 성능을 압도하는 것을 확인하였다. 더 나아가 제안된 기저속성 추천시스템은 추론 시에 GPU 컴퓨팅 자원을 요구하지 않기에 서비스 측면에서도 많은 이점이 있음을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.471-474
/
2022
음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.
Jung, Young Gyo;Kim, Sang Young;Lee, Jung-June;Youn, Hee Yong
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.81-82
/
2016
최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.41-43
/
2018
소설 데이터는 인터넷 상의 수 많은 개인과 개인의 상호 작용에 의하여 연결되어 있으며, 이러한 데이터를 분석하여, 분석 대상에 내재하고 있는 구조와 특성을 파악하는 일은 중요하다. 특히, 개인 추천을 위해서는 개별 데이터들의 관계 그래프를 활용하여 빠르고 정확하게 추천 값을 도출하는 것이 효율적이다. 하지만, 기존 추천 기법으로는 신규 사용자와 아이템이 끊임없이 등장하는 상황을 즉각적으로 반영하기가 어렵고, 또한 많은 결측값을 포함하는 sparse 한 데이터일 경우에는 추천 시스템의 연산 공간과 시간에 많은 제약이 있다. 이에 본 논문에서는 Spark GraphX 를 활용한 개인 추천 시스템을 설계 및 개발하였으며, 이를 통하여 사용자와 아이템간에 내재하는 복합 요인이 반영된 그래프 기반 추천을 실행하여, 개인 추천 결과의 우수성을 확인하였다.
Kim, Hyung-Il;Lee, Jin-Seok;Lee, Jeong-Hyun;Cho, Chin-Kwna;Kim, Kyoung-Sup;Kim, Jun-Tae
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.51-54
/
2006
본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.610-612
/
2005
협동적 여과를 이용한 추천 시스템은 데이터의 희소성 문제(sparseness problem)와 초기 추천 문제 (cold-start problem)에 대해 취약점을 가지고 있다. 협동적 여과를 이용한 추천 시스템에서 사용하는 선호도 데이터에 아이템들의 전체 수량에 비해 매우 적은 양의 아이템 선호도만 존재한다면 사용자들의 유사도 측정에 문제를 발생시켜 극단적인 경우엔 협동적 추천이 불가능할 경우가 발생한다. 이와 같은 문제는 선호도 데이터에 나타난 아이템들의 총수에 비해 사용자가 선호(구매)한 아이템이 극히 적은 수량으로 존재하기 때문이며 새로운 사용자의 경우에는 아이템 선호도 정보가 전혀 없기 때문에 유사 사용자를 추출하지 못하여 아이템을 전혀 추천할 수 없는 문제가 발생한다. 본 논문에서는 희소성이 높은 선호도 데이터를 희소하지 않은 상태로 변형하는 희소 데이터 변형 기법을 제안한다. 희소 데이터 변형 기법은 희소데이터에 나타난 사용자와 아이템의 추가 속성 정보의 확률분포를 이용하여 알려지지 않은 선호도 값을 예측함으로써 희소성이 높은 선호도 데이터를 변경하고, 변경된 선호도 데이터를 협동적 추천에 적용하여 추천 성능을 향상시킨다. 이와 같은 선호도 데이터 변경 기법을 데이터 블러링(data blurring)이라 한다. 몇가지 실험 결과를 통해 제안된 기법의 효과를 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.