• Title/Summary/Keyword: 정보 추천 시스템

Search Result 1,438, Processing Time 0.034 seconds

Design of Automatic Knowledge Registration and Recommendation Agent on P2P KMS (Hybrid P2P 기반 지식관리시스템에서의 지식 자동등록 및 추천 에이전트 설계)

  • Kim, Dong-Woon;Kim, Han-Woo;Park, Jung-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.664-666
    • /
    • 2005
  • 이 논문에서는 기존의 지식관리시스템과 P2P방식을 접목한 P2P 지식관리시스템을 제안하고 제안된 시스템의 구조와 효율적으로 지식을 검색하기 위한 지능형 에이전트 대하여 기술하였다. 에이전트의 종류는 지식추출과 추천 에이전트가 있으며, 지식추출 에이전트는 대량의 데이터에서 지식을 추출하고, 개인 맞춤형 지식 추천 에이전트는 추출된 지식에서 사용자가 관심 있는 분야의 지식을 추천해 주는 것이다. 제안된 시스템의 구조와 에이전트 기법은 회사나 단체에 속한 사용자들이 방대한 데이터, 정보 또는 사용자들의 전문성과 경험으로 축적된 지식을 빠르고 쉽게 검색하게 해주어 양질의 지식을 사용자들이 추천 받아 사용하도록 함으로써 전체 구성원의 지식도를 높이며, 이러한 지식들을 재활용하여 더욱 많은 지식과 부가 가치를 창출하도록 지원하여 준다.

  • PDF

Ontology based Context-Aware Recommendation System using Concept Hierarchy (개념 계층 모델을 이용한 온톨로지 기반 상황 인식 추천 시스템)

  • Ahn, Myoung-Hwan;Kwon, Joon-Hee
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.81-89
    • /
    • 2007
  • In this thesis, we propose ontology based context-aware recommendation system using concept hierarchy(OCARCH), Context-aware recommendation services are useful to provide an user with relevant information and/or services bared on his current context, However several approaches to context-aware recommendation system have been already proposed, each of them provide information without considering level of information concept bared on his current context, For this reason, we propose OCARCH as system capable of helping people to find their way quickly and easily through large amounts of information by determining level of information concept based on his current context, We are also using prefetching algorithm to store recommendation information that the user is likely to need in the near future based on current predictions, Therefore the OCARCH enables users to obtain relevant information efficiently, Several experiments are performed and the experimental results show that the proposed system provides more effective than conventional context-aware recommendation system.

  • PDF

An Implementation of Web System for Recommending User-aware Cosmetics (개인 맞춤형 화장품 추천을 위한 웹 시스템 구현)

  • Kim, So-Jeong;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1275-1277
    • /
    • 2013
  • 최근 성별과 나이를 불문하고 화장품에 관한 관심이 증가하고 있다. 그러나 현재까지의 화장품 추천 시스템은 간단한 피부 자가 분석이 어렵기 때문에 자신의 피부를 잘 알 수 없는 상황에서, 사용자 개개인의 피부 정보를 전혀 고려하지 않은 정보를 제공하고 있다. 따라서, 본 논문에서는 사용자의 피부 정보를 분석하여 각각의 사용자에게 적합한 화장품을 추천하는 웹 시스템을 제안한다.

A Robust Collaborative Filtering against Manipulated Ratings (조작된 선호도에 강건한 협업적 여과 방법)

  • Kim, Heung-Nam;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.81-98
    • /
    • 2009
  • Collaborative filtering, one of the most successful technologies among recommender systems, is a system assisting users in easily finding the useful information and supporting the decision making. However, despite of its success and popularity, one notable issue is incredibility of recommendations by unreliable users called shilling attacks. To deal with this problem, in this paper, we analyze the type of shilling attacks and propose a unique method of building a model for protecting the recommender system against manipulated ratings. In addition, we present a method of applying the model to collaborative filtering which is highly robust and stable to shilling attacks.

  • PDF

Toward Preventing Cold-start Problem: Basis Recommendation System (콜드스타트 문제 완화를 위한 기저속성 추출 기반 추천시스템 제안)

  • Jungseob Lee;Hyeonseok Moon;Chanjun Park;Myunghoon Kang;Seungjun Lee;Sungmin Ahn;Jeongbae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.427-430
    • /
    • 2022
  • 추천시스템에서 콜드스타트 문제를 해결하기 위해 다양한 연구들이 진행되고 있다. 하지만, 대부분의 연구는 아직도 사용자 기반의 히스토리 데이터셋을 반드시 필요로 하여, 콜드스타트 문제를 완벽히 해결하지 못하고 있다. 이에 본 논문은 콜드스타트 문제를 완화할 수 있는 기저속성 기반의 추천시스템을 제안한다. 제안하는 방법론을 검증하기 위해, 직접 수집한 한국어 영화 리뷰 데이터셋을 기반으로 성능을 검증하였으며, 평가 결과 제안한 방법론이 키워드와 사용자의 리뷰 점수를 효과적으로 반영한 추천시스템임을 확인할 수 있었고, 데이터 희소성 및 콜드스타트 문제를 완화하여 기존의 텍스트 기반 랭킹 시스템의 성능을 압도하는 것을 확인하였다. 더 나아가 제안된 기저속성 추천시스템은 추론 시에 GPU 컴퓨팅 자원을 요구하지 않기에 서비스 측면에서도 많은 이점이 있음을 확인하였다.

  • PDF

Analysis of Emotions in Lyrics by Combining Deep Learning BERT and Emotional Lexicon (딥러닝 모델(BERT)과 감정 어휘 사전을 결합한 음원 가사 감정 분석)

  • Yoon, Kyung Seob;Oh, Jong Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.471-474
    • /
    • 2022
  • 음원 스트리밍 서비스 시장은 지속해서 성장해왔다. 그중 최근에 가장 성장세가 돋보이는 서비스는 Spotify와 Youtube music이다. 두 서비스의 추천시스템은 사용자가 좋아할 만한 음악을 계속해서 추천해 줌으로써 많은 사랑을 받고 있다. 추천시스템 성능은 추천에 활용할 수 있는 변수(Feature) 수에 비례한다고 볼 수 있다. 최대한 많은 정보를 알아야 사용자가 원하는 추천이 가능하기 때문이다. 본 논문에서는 기존에 존재하는 감정분류 방법론인 사전기반과 딥러닝 BERT를 사용한 머신기반 방법론을 적절하게 결합하여 장점을 유지하면서 단점을 보완한 하이브리드 감정 분석 모델을 제안함으로써 가사에서 느껴지는 감정 비율을 분석한다. 감정 비율을 음원 가중치 변수로 사용하면 감정 정보를 포함한 고도화된 추천을 기대할 수 있다.

  • PDF

A Study on Collaborative Filtering Recommendation Algorithm base on Hadoop and Spark (하둡 및 스파크 기반의 협력 필터링 추천 알고리즘 연구)

  • Jung, Young Gyo;Kim, Sang Young;Lee, Jung-June;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.81-82
    • /
    • 2016
  • 최근 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해주는 추천 시스템은 협력 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천 시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위하여 협력 필터링 알고리즘을 클러스터링 기반으로 분산 환경에서 구현하여, 추천의 효과를 최적화 하는 기법을 제안하며 하둡 및 스파크 기반으로 시스템을 구성하여 협력 필터링 추천 알고리즘을 비교 하였다.

  • PDF

A Development of Personalized Recommendation System using Spark GraphX (Spark GraphX를 활용한 개인 추천 시스템 개발)

  • Kim, Sungsook;Park, Kiejin;Lu, Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.41-43
    • /
    • 2018
  • 소설 데이터는 인터넷 상의 수 많은 개인과 개인의 상호 작용에 의하여 연결되어 있으며, 이러한 데이터를 분석하여, 분석 대상에 내재하고 있는 구조와 특성을 파악하는 일은 중요하다. 특히, 개인 추천을 위해서는 개별 데이터들의 관계 그래프를 활용하여 빠르고 정확하게 추천 값을 도출하는 것이 효율적이다. 하지만, 기존 추천 기법으로는 신규 사용자와 아이템이 끊임없이 등장하는 상황을 즉각적으로 반영하기가 어렵고, 또한 많은 결측값을 포함하는 sparse 한 데이터일 경우에는 추천 시스템의 연산 공간과 시간에 많은 제약이 있다. 이에 본 논문에서는 Spark GraphX 를 활용한 개인 추천 시스템을 설계 및 개발하였으며, 이를 통하여 사용자와 아이템간에 내재하는 복합 요인이 반영된 그래프 기반 추천을 실행하여, 개인 추천 결과의 우수성을 확인하였다.

A Music Recommendation System by Using Graph-based Collaborative Filtering (그래프 기반 협동적 여과를 이용한 음악 추천 시스템)

  • Kim, Hyung-Il;Lee, Jin-Seok;Lee, Jeong-Hyun;Cho, Chin-Kwna;Kim, Kyoung-Sup;Kim, Jun-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.51-54
    • /
    • 2006
  • 본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.

  • PDF

Modifying Sparse Data for Collaborative Filtering (협동적 여과를 위한 희소 데이터 변형 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.610-612
    • /
    • 2005
  • 협동적 여과를 이용한 추천 시스템은 데이터의 희소성 문제(sparseness problem)와 초기 추천 문제 (cold-start problem)에 대해 취약점을 가지고 있다. 협동적 여과를 이용한 추천 시스템에서 사용하는 선호도 데이터에 아이템들의 전체 수량에 비해 매우 적은 양의 아이템 선호도만 존재한다면 사용자들의 유사도 측정에 문제를 발생시켜 극단적인 경우엔 협동적 추천이 불가능할 경우가 발생한다. 이와 같은 문제는 선호도 데이터에 나타난 아이템들의 총수에 비해 사용자가 선호(구매)한 아이템이 극히 적은 수량으로 존재하기 때문이며 새로운 사용자의 경우에는 아이템 선호도 정보가 전혀 없기 때문에 유사 사용자를 추출하지 못하여 아이템을 전혀 추천할 수 없는 문제가 발생한다. 본 논문에서는 희소성이 높은 선호도 데이터를 희소하지 않은 상태로 변형하는 희소 데이터 변형 기법을 제안한다. 희소 데이터 변형 기법은 희소데이터에 나타난 사용자와 아이템의 추가 속성 정보의 확률분포를 이용하여 알려지지 않은 선호도 값을 예측함으로써 희소성이 높은 선호도 데이터를 변경하고, 변경된 선호도 데이터를 협동적 추천에 적용하여 추천 성능을 향상시킨다. 이와 같은 선호도 데이터 변경 기법을 데이터 블러링(data blurring)이라 한다. 몇가지 실험 결과를 통해 제안된 기법의 효과를 확인하였다.

  • PDF