This study is composed of analyses about whether intensifying the attribute level of alternatives presented to consumers makes the effect of intensifying attributes and there is any significant difference among effects of the intensified attributes. For this, the most favorite alternative is extracted from each group of computers and jeans through conjoint analysis, which is used as a standard alternative during the process of experimentation. In conclusion, this research suggests that in terms of business, by intensifying the latter attribute of products rather than the early attribute, an enterprise acquire distinct and competitive superiority over similar competing products (esp. functional products), and theoretically, by expanding and analyzing decision models it can predict consumers' behaviors more correctly.
Successor representation (SR) 은 두뇌 내 해마의 공간 세포가 인지맵을 구성하여 환경을 학습하고, 이를 활용하여 변화하는 환경에서 유연하게 최적 전략을 수립하는 기전을 모사한 강화학습 방법이다. 특히, 학습한 환경 정보를 활용, 환경 구조 안에서 목표가 변화할 때 강인하게 대응하여 일반 model-free 강화학습에 비해 빠르게 보상 변화에 적응하고 최적 전략을 찾는 것으로 알려져 있다. 본 논문에서는 SR 기반 강화학습 알고리즘이 보상의 변화와 더불어 환경 구조, 특히 환경의 상태 천이 확률이 변화하여 보상의 변화를 유발하는 상황에서 어떠한 성능을 보이는 지 확인하였다. 벤치마크 알고리즘으로 SR 의 특성을 목적 기반 강화학습으로 통합한 SR-Dyna 를 사용하였고, 환경 상태 천이 불확실성과 보상 변화가 동시에 나타나는 2-stage 마르코프 의사결정 과제를 실험 환경으로 사용하였다. 시뮬레이션 결과, SR-Dyna 는 환경 내 상태 천이 확률 변화에 따른 보상 변화에는 적절히 대응하지 못하는 결과를 보였다. 본 결과를 통해 두뇌의 강화학습과 알고리즘 강화학습의 차이를 이해하여, 환경 변화에 강인한 강화학습 알고리즘 설계를 기대할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.393-396
/
2006
강화학습은 환경과 상호작용하는 과정을 통하여 목표를 이루기 위한 전략을 학습하는 방법으로써 에이전트의 학습방법으로 많이 사용한다. 독립적인 에이전트가 아닌 상호 의사소통이 가능한 다중 에이전트 환경에서 에이전트의 학습정보를 서로 검색 및 공유가 가능하다면 환경이 거대하더라도 기존의 강화학습 보다 빠르게 학습이 이루어질 것이다. 하지만 아직 다중 에이전트 환경에서 학습 방법에 대한 연구가 미흡하여 학습정보의 검색과 공유에 대해 다양한 방법들이 요구되고 있다. 본 논문에서는 대상 에이전트 학습 정보와 주변 에이전트들의 학습 정보 사이에 편집거리를 비교하여 유사한 에이전트를 찾고 그 에이전트 정보를 강화학습 사전정보로 사용함으로써 학습속도를 향상시킨 ED+Q-Learning 시스템을 제안한다.
Korea Mechanical Construction Contractors Association
월간 기계설비
/
no.9
s.206
/
pp.24-25
/
2007
인터넷 사용인구가 급속도로 증가하면서 피해발생이 위험수위를 넘어섬에 따라 정보통신부가 정보통신망에서의 개인정보 수집.이용.제공에 대한 고지 및 동의제도 개선.보완, 개인정보 취급 위탁 관리.감독 강화, 개인정보취급방침 공개 의무화 등 개인정보 보호강화를 확대하고 지난 7월 27일부터 시행에 들어갔다. 정보통신부에 따르면 정보통신망에서의 이용자 보호 및 개인정보 보호 강화를 내용으로 하는 개정"정보통신망 이용촉진 및 정보보호 등에 관한 법률"(이하 정보통신망법) 및 동법 시행령과 시행규칙이 개정되어 지난 7월 27일부터 동시에 시행됐다.
정보기술 발전과 활용 확대에 따라 정보보호의 개념과 범위는 지속적으로 확대, 발전하여 왔다. 최근 우리나라 및 주요 선진국은 유비쿼터스 사회 건설을 위해 다양한 노력을 기울이고 있는데 이의 일환으로 정보보호 강화를 위한 다양한 노력도 병행되고 있다. 이러한 추세는 국방 분야 또한 마찬가지이다. 현재 미국방부 등 주요 군사선진국들은 미래전 환경을 대비하여 네트워크중심전 개념의 전략변환을 추진 중인데, 이에 따른 정보보호 문제 대비를 위해 다양한 노력을 추진 중에 있다. 이에 본 고에서는 정보화 환경 변화와 유비쿼터스 시대의 미래전 환경을 대비한 주요 군사선진국등의 정보보호 추진 동향을 살펴 보았는데, 주요 시사점으로는 공통 정보보호 추진 전략 정립 및 세부 기준/지침 강화, 미래전 환경에 부합하는 정보보호체계 개발 및 성능개량, 정보시스템의 보안성 평가/검증 및 관리체제 강화 들과 같이 실질적인 정보보호 추진을 위해 기반을 강화하고, 기존 정보보호 대응수단을 더욱 체계화, 고도화하기 위한 노력을 적극적으로 추진하고 있다고 분석된다.
아직까지 정보보호 활동은 기업의 입장에서 비용을 단순히 소비' 하는 업무로 인식되는 경우가 많다. 때문에 최근의 경기침체가 보안예산의 축소나 보안활동의 위축으로 이어질 것이라는 우려가 적지 않다. 그러나 정작 기업 정보보호 담당자들의 시각은 다른 것으로 나타났다. 오히려 경기침체가 정보보호 강화의 계기가 될 것이라고 전망하는 담당자도 적지 않았다. 정보보호 부서와 역할 범위가 강화되는 것으로 해석해 볼 수 있는 대목이다. 기업 보안 부서와 담당자들의 역할 변화를 감지할 수 있는 기업 정보보호 실태조사 결과의 일부를 소개해 보고자 한다. 이번 설문조사는 지난 3월 24일 (사)한국침해사고대응팀협의회가 개최했던 CONCERT FORECAST 2009 참석자 중 110명을 대상으로 실시한 것이다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.157-161
/
2003
본 논문에서는 차량의 주행경로 최적화를 위해 강화학습 개념을 적용하고자 한다. 강화학습의 특징은 관심 대상에 대한 구체적인 지배 규칙의 정보 없이도 최적화된 행동 방식을 학습시킬 수 있는 특징이 있어서, 실제 차량의 주행경로와 같이 여러 교통정보 및 시간에 따른 변화 등에 대한 복잡한 고려가 필요한 시스템에 적합하다. 또한 학습을 위한 강화(보상, 벌칙)의 정도 및 기준을 조절해 즘으로써 다양한 최적주행경로를 제공할 수 있다. 따라서, 본 논문에서는 강화학습 알고리즘을 이용하여 다양한 최적주행경로를 제공해 주는 시스템을 구현한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.151-153
/
2001
Q-Learning과 같은 기본적인 강화 학습 알고리즘은 문제의 사이즈가 커짐에 따라 성능이 크게 떨어지게 된다. 그 이유들로는 목표와의 거리가 멀어지게 되어 학습이 어려워지는 문제와 비 지향적 탐색을 사용함으로써 효율적인 탐색이 어려운 문제를 들 수 있다. 이들을 해결하기 위해 목표와의 거리를 줄일 수 있는 계층적 강화 학습 모델과 여러 가지 지향적 탐색 모델이 있어 왔다. 본 논문에서는 이들을 결합하여 계층적 강화 학습 모델에 지향적 탐색을 가능하게 하는 탐색 보너스를 도입한 강화 학습 모델을 제시한다.
도시의 인구 밀집도가 증가함에 따라 도시의 단위 면적당 건물 밀집도 역시 증가하고 있으며, 이에 도시 화재는 대규모 화재로 발전할 가능성이 높다. 도시 내 대규모 화재로 인한 인명 및 경제적인 피해를 최소화하기 위해 시뮬레이션 기반의 화재 대응 방안들이 널리 연구되고 있으며, 최근에는 시뮬레이션에서 효과적인 화재 대응 방안을 탐색하기 위해 강화학습 기술을 활용하는 연구들이 소개되고 있다. 그러나, 시뮬레이션의 규모가 커지는 경우, 상태 정보 및 화재 대응을 위한 행위 공간의 크기가 증가함으로 인해 강화학습의 복잡도가 증가하며, 이에 따라 학습 확장성이 저하되는 문제가 발생한다. 본 논문에서는 시뮬레이션 규모 증가 시 강화학습의 학습 확장성을 유지하기 위해, 화재 상황 정보와 재난 대응을 위한 행위 공간을 변환하는 기법을 제안한다. 실험 결과를 통해 기존에 강화학습 모델의 학습이 어려웠던 대규모 도시 재난시뮬레이션에서 본 기법을 적용한 강화학습 모델은 학습 수행이 가능하였으며, 화재 피해가 없는 상황의 적합도를 100%로 하고, 이것 대비 99.2%의 화재 대응 적합도를 달성했다.
키 교환 프로토콜은 대표적인 암호화 프로토콜로서 그 안전성 모델에 관한 연구가 꾸준히 진행되어 왔다. 최근에는 기존의 안전성 모델을 강화시키고 강화된 모델을 바탕으로 키 교환 프로토콜 설계가 이루어졌다. 본 논문에서는 강화된 새로운 안전성 모델 결과들을 정리해서 살펴보고 향후 연구 방향에 대해서 논한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.