평형문제들에서의 기본적인 정리들이 일반화 볼록공간에서 어떻게 확장되는가를 보인다. KKM 이론의 중요한 정리들 대부분이 위상벡터공간에서의 선형성을 가정하지 않아도 위상적인 성질만으로 성립한다. 이같은 정리들의 예로는 KKM정리, von Neumann의 최소최대정리와 교차정리, Nash의 평형정리, 여러 가지 부동점정리, 극대원정리, Ky Fan의 최소최대부등식, 변분부등식들, 최량근사정리, 일반화 의사평형문제들의 해의 존재정리들이 있다.
회로망정리에는 Kirchhoff의 법칙을 바탕으로 한 Tellegen의 정리[T-1]를 비롯하여 치환정리, 중첩정리, Thevenin-Norton의 정리 및 상반정리 등이 있다. 이들 제정리들은 실제 우리 전기공학자 및 기술자들이 실제문제 또는 현장에서 작업하는 과정에서 자주 부딛치게 되는 각종 회로망이 광범위하게 적용될 수 있을 뿐만 아나라, 그 결론이 매우 간단하므로 그 유용성은 매우 크다. 그러나 이들 제정리들이 지니고 있는 일반성과 간이성을 잘못 인식하여, 실제 응용에서 맛볼 수 있는 통쾌감을 제대로 느끼지 못하는 사람들이 비교적 많다. 본 해설에서는 상기한 제정리중 비교적 최근에 발표된 (1952년) Tellegen의 정리에 대하여 설명하며, 이 정리가 어떻게 유용하게 이용될 수 있는가를 보기를 통하여 설명하고저 한다.
본 논문은 피타고라스 정리의 다양한 증명 방법을 통하여 피타고라스 정리를 다양한 측면에서 학습할 수 있는 방안을 모색하고자 하였다. 학습자 스스로 증명하는 즐거움을 느낄 수 있도록 피타고라스 정리의 다양한 증명 방법을 체계적으로 제시하였고, 피타고라스 정리의 다양한 증명 방법을 통해 수학적 아름다움을 알 수 있도록 피타고라스 정리의 증명을 활용한 테셀레이션을 제시하였다.
In this article we study on didactic transposition and enlargement of the Ceva theorem(if three cevians AX, BY, CZ, one through each vertex of a triangle ABC, are concurrent, then $\frac{BX}{XC}\frac{CY}{YA}\frac{AZ}{ZB}$ = 1). We suggest inverse of the Ceva theorem, some different forms of the Ceva theorem(oriented segment form, trigonometric form, vector form), enlarged the Ceva theorem of polygon and tetrahedron, and in detail propose these proofs.
The sphere theorem is one of the main streams in modern Riemannian geometry. In this article, we survey developments of pinching theorems from the classical one to the recent differentiable pinching theorem. Also we include sphere theorems of metric invariants such as diameter and radius with historical view point.
This study analyzed the Fundamental Theorem of Calculus from the historical, mathematical, and instructional perspectives. Based on the in-depth analysis, this study suggested an alternative way of teaching the Fundamental Theorem of Calculus.
In this paper we study new proofs and generalization of Haga theorem in paper folding. We analyze developed new proofs of Haga theorem, compare new proofs with existing proof, and describe some difference of these proofs. We generalize Haga second theorem, and suggest simple proof of generalized Haga second theorem.
섀논의 샘플링 정리는 여러 방향으로 확장 발전되어왔으나 본 논문에서는 초함수 이론으로 다룰 수 있는 방향, 즉 좀 더 큰 공간에 속하는 함수에 대한 샘플링 정리를 얻는 것이다. 먼저 샘플링이론의 기본정리인 섀논-코텔니코프 공식을 소개하고 그 자연스런 확장인 페일리-위너 공간, 번스타인 공간에서의 샘플링정리 등을 다루었고 번스타인 공간의 자연스런 확장인 유계인 받침을 갖는 초함수의 푸리에변환 즉, 실공간 위에서 다항식정도로 증가하는 전해석함수에 대한 샘플링 정리를 소개한다. 끝으로 우리의 최근 결과인 실공간 위에서 지수적으로 증가하는 전해석 함수에 대한 샘플링 정리와 그 응용, 그리고 오차추정 등을 다룬다.
The purpose of this paper is to analyze the stock market performances CAR of reorganized firms and study the disclosure effect of completion of reorganization to examine whether there exists significant economic merit for the institutionalized continuation of unprofitable firms. The main results of this paper can be summarized as follows. First, the average stock market performances for +12 months after the completion of reorganization compared to those for -6 months before the proposal of reorganization show consistently negative returns. Second, to see whether there exist significant differences between the stock market performances of reorganized firms and those of normal firms with similar characteristics, CAR's measured from -6 months before the proposal of reorganization to +12 months after the completion of reorganization are statistically tested, which results in significantly negative values starting +5 months after the completion of reorganization. Finally, to see the disclosure effect of the news of completion of reorganization, daily CAR's are measured and tested, which shows positive values only for -20 days and -19 days before the disclosure, and shows negative values for the whole periods up to +20 days after the disclosure. The results of the paper imply consistently that the reorganized firms have no better performances compared to the similar normal firms, and the performances do not improve even after the completion of reorganization, which casts serious doubts upon the current forms of the institutionalized continuation of unprofitable firms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.